

Page 1
Confidentiality: EC Distribution

July 2015

This project has received funding from the European Union’s Seventh Framework Programme for

research, technological development and demonstration under grant agreement no 607881

Petty cRiminality diminution through sEarch

and Analysis in multi-source video Capturing

and archiving plaTform

Instrument: Research and Innovation Action

Thematic Priority: FP7- SEC - 2013.7.2-1
Grant Agreement: 607881

Page 2
Confidentiality: EC Distribution

July 2015

P-REACT Conceptual Architecture

Deliverable Number D2.3

Title P-REACT Conceptual Architecture

Version 3.0

Date 20th July 2015

Status Revision

Dissemination Level PU (Public)

Nature Report

EC Distribution

Project Partners: Vicomtech-IK4 (VICOM); Kinesense (KS); Aditess (ADI); Future Intelligence
(FINT); Center for Research and Technology Hellas (CERTH); Center for
Security Studies (KEMEA); Societa Reti e Mobilita (SRM)

Contributors: Main: Georgios Stavropoulos – CERTH
 Others: Dimitrios Tzovaras - CERTH

Marcos Nieto – VICOMTECH
Anargyros Sideris – FINT
Nectarios Efstathiou – ADITESS
Georgios Kioumourtzis – KEMEA
Prokopios Drogaris - KEMEA
Daniel Keenaghan – KS
Liza Charalambous – ADITESS
Nikolaos Koutras – ADITESS
Dimosthenis Ioannidis - CERTH
Nikolaos Porfyriou - CERTH

Every effort has been made to ensure that all statements and information contained herein are accurate;
however the Partners accept no liability for any error or omission in the same.
© Copyright in this document remains vested in the Project Partners

Document Control

Version Date Author Modifications

0.1 16/09/2014 Georgios Stavropoulos Initial Version - TOC

0.2 3/11/2014 Anargyros Sideris FINT Contribution

0.3 11/11/2014 Marcos Nieto VICOM Contribution

0.4 5/12/2014
Liza Charalambous, Nectarios
Efstathiou, Nikolaos Koutras

ADITESS Contribution

0.5 11/12/2014 Daniel Keenaghan KS Contribution

1 07/01/2015 Georgios Stavropoulos First Consolidated Version

Page 3
Confidentiality: EC Distribution

July 2015

1.1 19/01/2015 Anargyros Sideris Updated FINT’s contribution

1.2 20/01/2015 Prokopios Drogaris Provided Section on Privacy, Stigmatization etc.

1.3 23/01/2015 Mauro Borioni Internal Review

1.5 02/02/2015 Marcos Nieto VICOM response to Review comments

1.5 02/02/2015 Lisa Charalambous ADITESS response to Review comments

1.5 04/02/2015 Anargyros Sideris FINT response to Review comments

1.5 04/02/2015 Daniel Keenaghan KS response to Review comments

2.0 05/02/2015 Georgios Stavropoulos Final Version

2.1 18/06/2015 Liza Charalambous Revised Audio analytics sections

2.5 29/06/2015 Anargyros Sideris Revised Figures

2.6 30/06/2015 Georgios Stavropoulos Pre-Final Revised Version

2.7 07/07/2015 Sarah Doyle Internal Review

2.9 14/07/2015 Georgios Stavropoulos Addressed comments of Internal Review

3.0 20/07/2015 Georgios Stavropoulos

Final Version. Added Section 1.1 with surveillance SoA,
moved code to appendix, updated Video and Depth

analytics, included list of developed modules in sections
3.1.3 and 3.3.3 for embedded and cloud side

respectively.

List of abbreviations

Abbreviation Definition

URI Uniform Resource Identifier

JSON JavaScript Object Notation

GUI Graphical User Interface

XML Extensible Mark-up Language

SOAP Simple Object Access Protocol

UDP User Datagram Protocol

UI User Interface

DB Data Base

GUID Globally Unique IDentifier

RGB-D RGB (Red-Green-Blue) images along with Depth information

IP Internet Protocol

Executive Summary

This deliverable presents the results of Work Package 2 –System Architecture of the P-REACT project,

carried out under the European Union (EU) 7th Framework Program (FP7). More specifically, this report

outlines the conceptual architecture of the system, in order to provide a holistic view on the architecture,

its building blocks, components, interdependencies among components and related constraints such as

development methodology. It also describes in detail the functional and technical specifications of the

components that comprise the P-React system architecture, defining the structural, development,

deployment and dynamic view of the system. The methodology followed in this deliverable towards this

Page 4
Confidentiality: EC Distribution

July 2015

direction is presented in Section 1.

Initially, the conceptual architecture of the P-React system is presented (SectionSection 2). This is a

high-level view on the overall architecture, describing the two major components of the P-React system,

the embedded system and the cloud, along with their fundamental building blocks (modules).

Then, the structural view of the system is defined (Section 3), presenting the different architectural

elements that deliver the system’s functionality. This view provides the system’s decomposition into

different components, demonstrating the responsibilities and functionalities of each of them.

In Section 4, the development view is presented, describing how the architecture supports the

development process. Here, aspects like components technical requirements and dependencies,

programming technologies and use of existing software are covered.

The deployment view, described in Section 5, defines the physical environment in which the system is

intended to run, including required hardware environment (e.g. processing nodes, network

interconnections, etc.), technical environment requirements for each node, mapping of software

elements to the runtime environment, third-party software requirements and network requirements.

Focus is given to the analysis of the dynamic behaviour of the system, in Section 6, where the actual

use cases and scenarios are correlated with each component and the way that each component acts

within them. The functionality of the system is described in detail though UML use case and sequence

diagrams.

A detailed specification for all the core architectural elements is given in Section 7, in order to provide a

deep insight on the P-REACT system and to guarantee seamless interoperability among the

components. Focus is given on the internals of the components, the interfaces, inputs/outputs and data

types.

Finally, it should be noticed that although this report is delivered according to the P-React DoW in Month

10, the architectural elements and their detailed specifications will remain an open issue till all

components and subsystems are built and all modules have been integrated to the P-REACT system.

Thus, this document can be considered as a living document.

Page 5
Confidentiality: EC Distribution

July 2015

Table of contents

LIST OF ABBREVIATIONS ... 3

EXECUTIVE SUMMARY .. 3

TABLE OF CONTENTS... 5

ANNEXES .. 6

TABLES .. 6

FIGURES .. 6

1. INTRODUCTION... 8

1.1. VIDEO SURVEILLANCE STATE OF THE ART ... 8

2. CONCEPTUAL ARCHITECTURE ... 9

2.1. EMBEDDED SYSTEM ... 10

2.1.1. Embedded System Management-ESM ... 10

2.1.2. Sensors Manager .. 11

2.1.3. Analytics Module .. 12

2.1.4. Clip Object / Clip Object Generator... 16

2.2. CLOUD .. 17

2.2.1. Orchestration .. 17

2.2.2. Business Logic ... 18

2.2.3. Analytics Module .. 18

2.2.4. Video Content Management System (VCMS) ... 20

2.3. COMMUNICATION ... 21

2.4. PRIVACY BY DESIGN APPROACH ... 21

3. FUNCTIONAL VIEW ... 23

3.1. EMBEDDED SYSTEM ... 23

3.1.1. Embedded System Manager ... 23

3.1.2. Sensor Manager ... 25

3.1.3. Analytics Modules ... 27

3.1.4. Event Detection .. 33

3.1.5. Clip Object / Clip Object Generator... 33

3.2. COMMUNICATION MODULE .. 35

3.2.1. ENCRYPTION MANAGER .. 35

3.2.2. Secure Communications ... 37

3.2.3. Clip Handler .. 38

3.3. CLOUD .. 40

3.3.1. Orchestration .. 40

3.3.2. Situational Awareness .. 40

3.3.3. Analytics Modules ... 40

3.3.4. VCMS .. 43

4. DEVELOPMENT VIEW .. 43

4.1. KEY COMPONENTS DEVELOPMENT ... 43

4.2. SOURCE CODE AND CONFIGURATION MANAGEMENT ... 45

Page 6
Confidentiality: EC Distribution

July 2015

4.2.1. Source Code Management with Git .. 45

4.2.2. Coding Conventions .. 46

4.2.3. Use of Existing Software ... 47

5. DEPLOYMENT VIEW .. 48

5.1. HARDWARE REQUIREMENTS .. 48

5.2. EXISTING SOFTWARE AND HARDWARE REQUIREMENTS ... 49

5.3. NETWORK REQUIREMENTS .. 50

6. SYSTEM CONCEPT AND STRUCTURES .. 50

6.1. INTRODUCTION ... 50

6.1.1. System Context Diagram Definition and Scope .. 50

6.1.2. Architectural Elements Perspectives ... 51

6.1.3. Use Cases Definitions and main sequence diagrams .. 52

6.2. EMBEDDED SYSTEM ... 54

6.2.1. Static Model Analysis .. 54

6.2.2. Dynamic Model Analysis ... 55

6.3. CLOUD SYSTEM ... 57

6.3.1. Static Model Analysis .. 57

6.3.2. Dynamic Model Analysis ... 58

7. SYSTEM ARCHITECTURAL ELEMENTS SPECIFICATIONS .. 59

7.1. INTRODUCTION ... 59

7.2. EMBEDDED SYSTEM ... 60

7.2.1. Sensors .. 60

7.2.2. Architectural Elements ... 65

7.3. CLOUD ARCHITECTURAL ELEMENTS ... 74

8. CONCLUSIONS ... 83

Annexes

ANNEX I. ORCHESTRATION API DESCRIPTION .. 84

ANNEX II. VCMS FUNCTIONS .. 89

ANNEX III.REFERENCES ... 93

Tables

TABLE 1 HARDWARE REQUIREMENTS FOR THE VIRTUAL OS'S .. 49

TABLE 2: QUALITY PROPERTIES AND PERSPECTIVES THAT DESIGNERS SHALL CONSIDER DURING THE ARCHITECTURE
DEFINITION PROCESS. ... 52

Figures

FIGURE 1 CONCEPTUAL SYSTEM ARCHITECTURE ... 10

FIGURE 2 EMBEDDED SYSTEM MANAGER'S CONCEPTUAL OVERVIEW .. 11

Page 7
Confidentiality: EC Distribution

July 2015

FIGURE 3 SENSOR MANAGER'S CONCEPTUAL OVERVIEW .. 12

FIGURE 4 VIDEO ANALYTICS COMPONENTS ON THE EMBEDDED SYSTEM ... 13

FIGURE 5 VIDEO ANALYTICS AT THE EMBEDDED LEVEL. .. 13

FIGURE 6 THE DIAGRAMMATIC REPRESENTATION OF PROCESSES AND TASKS THAT TAKE PLACE DURING AUDIO
ANALYSIS. ... 16

FIGURE 7. CLIP GENERATOR'S CONCEPTUAL OVERVIEW. .. 17

FIGURE 8 CLOUD ORCHESTRATION BLOCK DIAGRAM INTERFACING THE INTERCONNECTIONS BETWEEN MODULES 18

FIGURE 9 VIDEO ANALYTICS COMPONENTS ON THE CLOUD ... 19

FIGURE 10 THE VCMS SYSTEM: COMMUNICATION BETWEEN ELEMENTS AND POSSIBLE OPERATIONS 20

FIGURE 11 COMMUNICATION MANAGER'S CONCEPTUAL OVERVIEW .. 21

FIGURE 12 EMBEDDED SYSTEM MANAGER'S FUNCTIONAL OVERVIEW... 24

FIGURE 13 SENSOR MANAGER'S FUNCTIONAL OVERVIEW.. 26

FIGURE 14 VIDEO ANALYTICS MODULE FUNCTIONAL OVERVIEW ... 28

FIGURE 15 INITIAL RGB FRAME ... 28

FIGURE 16 BACKGROUND SUBTRACTION .. 28

FIGURE 17 FOREGROUND DENOISING .. 28

FIGURE 18 OPTICAL FLOW FIELD ... 28

FIGURE 19 BASIC UML DIAGRAM OF THE RULE MANAGER APPROACH FOR VIDEO ANALYTICS. ONLINE (FOR EMBEDDED)
AND OFFLINE (FOR CLOUD-LEVEL) .. 30

FIGURE 20 EMBEDDED SYSTEM AUDIO ANALYTICS FUNCTIONAL VIEW .. 33

FIGURE 21 CLIP GENERATOR FUNCTIONAL OVERVIEW ... 34

FIGURE 22 (EMBEDDED SYSTEM) COMMUNICATOR - FUNCTIONAL OVERVIEW ... 35

FIGURE 23 (CLOUD) COMMUNICATOR - FUNCTIONAL OVERVIEW .. 36

FIGURE 24 (EMBEDDED SYSTEM) ENCRYPTION MANAGER - FUNCTIONAL OVERVIEW .. 36

FIGURE 25 (CLOUD) ENCRYPTION MANAGER - FUNCTIONAL OVERVIEW ... 36

FIGURE 26 (EMBEDDED SYSTEM) SCCM - FUNCTIONAL OVERVIEW... 37

FIGURE 27 (CLOUD) SCCM - FUNCTIONAL OVERVIEW ... 38

FIGURE 28 (EMBEDDED SYSTEM) CLIP HANDLER - FUNCTIONAL OVERVIEW ... 39

FIGURE 29 (CLOUD) CLIP HANDLER - FUNCTIONAL OVERVIEW.. 39

FIGURE 30 CLOUD MODULE ORGANISATION SHOWING INTERFACE RELATIONSHIPS ... 40

FIGURE 31 FUNCTIONAL VIEW OF THE VIDEO ANALYTICS MODULE ON THE CLOUD ... 41

FIGURE 32 CLOUD SIDE AUDIO ANALYTICS FUNCTIONAL VIEW... 43

FIGURE 33 SYSTEM ARCHITECTURE WITH COMPONENTS RESPONSIBLE PARTNERS .. 44

FIGURE 34 BITBUCKET P-REACT TEAM OVERVIEW SHOWING ALL AVAILABLE REPOSITORIES ... 46

FIGURE 35 BITBUCKET ONLINE CODE SNIPPET BROWSING ... 46

FIGURE 36 VIRTUAL HOSTS ON P-REACT'S CLOUD .. 49

FIGURE 37 BASIC CONTEXT DIAGRAM OF THE EMBEDDED SYSTEM .. 54

FIGURE 38 BASIC USE CASE OF THE EMBEDDED SYSTEM .. 56

FIGURE 39 USE CASE OF THE EMBEDDED SYSTEM WHERE THE SENSORS' PARAMETERS ARE CONFIGURED...................... 56

FIGURE 40 USE CASE WHERE MULTIMEDIA FILES ARE RECEIVED FROM A MOBILE DEVICE AND A CLIP IS GENERATED 57

FIGURE 41 BASIC CONTEXT DIAGRAM OF THE CLOUD SYSTEM ... 57

Page 8
Confidentiality: EC Distribution

July 2015

FIGURE 42 BASIC USE CASE OF THE CLOUD SYSTEM .. 59

FIGURE 44 USE CASE WHERE THE SENSORS OF AN EMBEDDED SYSTEM ARE RECONFIGURED .. 59

1. Introduction

The DoW describes this deliverable as:

D2.3 - P-REACT Conceptual Architecture: The P-REACT Conceptual Architecture will include

functional, technical, interoperability and large scale deployment specifications. Detailed view of the

architectural elements comprising P-REACT end-to-end system. Provisional UML diagrams outlining the

dynamic and static behaviour of the system. Moreover, the risks of stigmatization, discrimination and the

adequacy of measures will be addressed.

The aim of this document is to present the P-REACT conceptual system architecture. The architecture

of the various components is presented, along with the functional, development and deployment views.

Also the static and dynamic model analysis of the system is presented.

The document is organized as follows:

1. Section 2 presents the conceptual architecture of the system.

2. Section 3 describes the functional view of the various components

3. In Section 4 the development view is presented.

4. Section 5 describes the requirements for the deployment of the system

5. Section 6 presents the static and dynamic model analysis

6. Section 7 describes the specifications of the various architectural elements

7. And Section 8 concludes the present document

In the next sub-section, a short state of the art of the current video surveillance systems is

presented, along with the P-REACT’s proposed system advantages.

1.1. Video Surveillance State of the Art

Traditionally video surveillance systems use a network of IP cameras connected to a monitoring centre,

where the various video feeds are watched by security or law enforcement personnel. While such

systems are widely used, to date limited usage has been made of analytics to automate the monitoring

process. A typical example is the Operation Virtual Shield (OVS) [1], [2], [3] program which deploys a

network of thousands of cameras in a metropolitan area. The OVS system processes camera feeds in

real time and is able to detect dangerous activities and perform facial recognition per operator request.

A related project is Combat Zones That See (CTS) funded by United States Defence Advanced

Research Projects Agency (DARPA) [4]. At its core CTS incorporates technology that can identify and

track objects of interest (pedestrians, vehicles etc.). Similar initiatives are currently developed and

Page 9
Confidentiality: EC Distribution

July 2015

deployed in China [5] and UK [6].

In a smaller scale, video surveillance systems for domestic or business usage are also commercially

available. Such installations are usually smaller and simpler compared to the systems of the previous

paragraphs. There are several companies that are active in this sector including among others ADT[7],

Tyco Integrated Security[8], CPI Security[9], Lorex [10], Q-See [11]and Guardian Protection

Services[12]. The solutions offered by these companies include IP cameras (wired or wireless) with

video feeds stored in a centralized or cloud-based server. Most of them allow remote access to the

cameras using a mobile device or remote PC. The cameras used may include night vision (low-light or

thermal technology) and incorporate some basic algorithm for motion detection. If an abnormal event is

detected, a notification is sent to the operator of the system either as an email notification or as a video

clip.

One can easily identify a series of shortcomings in the available systems. First of all, typical surveillance

systems rely on basic video analytics such as motion detection. Recent advances in computer vision

and signal processing have created algorithms for background subtraction [13], [14], human detection

and tracking [15], [16], [17], activity recognition [18], [19] and human re-identification[20], [21] with

improved precision and recall in realistic conditions (e.g. dynamic scene, illumination variations) that

are mature enough for commercial deployment. P-REACT’s approach is to insert an intermediate low-

cost embedded device that will be responsible for locally analysing camera feeds in real time using

advanced audio and video analytics algorithms. Indeed the use of audio analytics is uncommon and

considered pioneering especially when combined with video analytics. Regarding the archiving of video

data, P-REACT will offer a cloud storage solution, enabling the user to perform content-based queries

(e.g. re-identification queries, text-based queries using video tagging etc.). The overall architecture is

highly modular as additional embedded systems, cameras and cloud resources will be seamlessly

added on demand. Currently, several established commercial solutions cannot scale having an upper

limit on the number of cameras they can manage and on the volume of video content manage whereas

P-REACT can handle new video feeds by dynamically allocating additional cloud resources

Furthermore, as the entire system uses open source software and low-cost devices, one can expect

that its overall cost will be lower compared to existing solutions. Indicatively, P-REACT advocates the

use of Linux over a proprietary operating system and uses depth cameras instead of thermal cameras

that are significantly more expensive. Moreover, since video content will be sent to the cloud only if a

certain activity is detected network resources utilization will be more efficient.

2. Conceptual Architecture

This Section describes the high-level view on the P-REACT system architecture, the distinction between

the Embedded System and the Cloud, while describing the major building blocks. Figure 1depicts the P-

REACT’s system conceptual architecture. The individual elements of the architecture will be described

over the next sections. Essentially, the P-REACT solution is divided into two core building blocks; the

Page 10
Confidentiality: EC Distribution

July 2015

Embedded Sensor and the Cloud. The Embedded sensors are positioned in close proximity to the

sensors (camera and microphone) located in retail premises and urban transport locations.

Figure 1 Conceptual System Architecture

2.1. Embedded System

The Embedded System is the part of the P-REACT system that is installed locally in the premises of a

small shop or a bus station. It is responsible for managing and capturing data from the audio and video

sensors, as well as to perform the necessary analysis on the captured data in order to detect volume

crime events. This section will describe its main building blocks which are the (1) Embedded System

Manager, (2) the Sensors Manager, (3) the Analytics Module and (4) the Clip Generator and can be

seen in the lower part ofFigure 1.

2.1.1. Embedded System Management-ESM

Embedded System Manager (ESM) is the "brain" of the Embedded System (ES). Its main goal is to

effectively coordinate all the individual components of ES towards detecting "petty crime" incidents,

recording them to Clips using open formats, and uploading them to the Cloud for further analysis. In this

context, ESM utilises a Controller and a number of Databases, with the former used for facilitating the

message exchange among the various ES components (Message Dispatcher) based on some

predefined configurable "logic" and the latter used for storing/retrieving information relative to the

operation of each ES module (DB Operator).

In more detail, Controller's primary building units are the Message Dispatcher (MD), Logic and DB

Operator (DBO). MD unit can be perceived as the central communication hub of the Embedded System:

Page 11
Confidentiality: EC Distribution

July 2015

messages (e.g. requests, informational) from any component arrive first here and messages to any

component are generated or forwarded from here. On the other hand, the Logic unit holds the

"intelligence" of the Embedded System; it provides the "rules of engagement", the thresholds of

characterising an event as a petty crime and the consequent actions (Clip generation, send alarm etc.).

Using the same analogy, if the Logic unit is Embedded System's "intelligence", DBO is the "memory"; it

stores and retrieves information related to ESM components operation.

Regarding the databases used in the ESM, Sensors DB holds information related to the Embedded

System's sensors (i.e. cameras, microphones etc.), including, but not limited to, the Sensor's id, type

and access Uri. In the same context, Analytics DB stores specifics about the available analytics

algorithms. Credentials DB keeps usernames and passwords needed to connect to the P-REACT cloud

while Sensors Data DB maintains information about the data captured from the sensors and which of it

have been sent to the analytics modules or streamed to the cloud. Finally, Analytics Results DB piles up

the sensor's data analysis results (e.g. anomaly scores) whilst the Clip DB accommodates metadata

describing the generated Clips (e.g. Clip's id, storage Uri, size, etc.).

Figure 2 Embedded System Manager's conceptual overview

2.1.2. Sensors Manager

Sensors manager accounts for the operations needed to acquire sensors' data or get/update sensors'

configuration. A software module, namely the Sensors Manager (SM) module, provides these

operations acting as the intermediate between the actual sensors (e.g. cameras, microphones etc.)

and the rest of the Embedded System (ES) modules. In more detail, SM comprises of a Sensors Data

Streamer (SDS), a Sensors Configurator (SC) and a Clip Data Storage unit. SDS handles all the

operations related with the sensors data such as getting sensors' data and forwarding them to the ES

analytics, storing Sensors' data as Clips (Clip Data), generating metadata that describe the sensors'

data (e.g. A/V codec, bitrate, access URI, etc.). On the other hand, SC manages all the sensors'

configuration operations like updating or getting a sensor's configuration. Finally, CDS is a specific

folder in the Embedded System's file system where the Clip Data (i.e. sensors' data) are saved.

Page 12
Confidentiality: EC Distribution

July 2015

Figure 3 Sensor Manager's conceptual overview

2.1.3. Analytics Module

The Analytics Module consists of a number of sub-modules that are responsible for performing the

necessary actions in order to detect abnormal behaviours in the area monitored by the embedded

system. In the current design, it consists of two sub-modules, Video and Audio analytics, but it can be

easily expandable to include other type of analytics if needed. The Video Analytics sub-module is

divided into two parts, one responsible for dealing with standard RGB video, and one to deal with more

advanced depth videos.

Video Analytics

In this section the architecture of the video analytics methods that will be deployed on the embedded

system is described. Due to the limited computational resources of the Embedded System, certain

design and implementation choices have to be made in order to ensure the robust and real time

performance of the video analytics component. One the most important design principles governing the

architecture of the video analytics is to comply with privacy and ethical regulations that are explained in

Deliverables D1.5 and D1.6. In order to comply with these regulations, the video analytics algorithms

will utilize a local video buffer spanning a few minutes, and only in the case of an abnormal event will

send video data to the cloud along with any metadata (video, audio, depth etc.). This ensures that no

data will be stored on the embedded system or sent to the cloud unless there is an event, thus

preserving privacy of the general population. In the following paragraphs the details of the individual

subsystems of the video analytics module are described.

The purpose of video analysis is to provide the P-REACT system the ability to automatically extract

useful, rich or even hidden information from raw video footage. The extracted information contains data

that can be consumed by other processes or machines to trigger subsequent actions (e.g. storage,

forwarding transform, etc.).

Page 13
Confidentiality: EC Distribution

July 2015

Figure 4 Video analytics components on the embedded system

In the context of surveillance applications, and in particular, in the context of the P-REACT project, the

specific goal of video analytics is to automatically detect petty crimes occurring in the scenes viewed by

the cameras. Given the distributed nature of the P-REACT architecture, this goal can be achieved

dividing the actions into two parts: (i) detect events or symptoms that might be related to petty crimes,

typically in the form of abnormal or distinctive visual patterns (e.g. rapid motion, sterile zone trespassing,

fighting detection etc.) in real-time; (ii) process, at the cloud-level, the information generated by the

embedded-level and the video clips in an offline fashion, to apply more powerful algorithms that

eventually recognize the person(s) involved in the event in clips stemming from other embedded

systems or in clips stored in the VCMS Although the system will be able to recognize people across

different clips and views, the actual identity of each individual thus providing forensic evidence while at

the same time preserving privacy. This separation of the processing is mandated by the limited

computational power of the embedded-platform, which is aimed to be a low cost device. The conceptual

view of the video analytics is depicted in Figure 5

Figure 5 Video analytics at the embedded level.

The limited computational power available at the embedded-level limits the types of algorithms that can

be deployed. Iterative approaches, non-linear regression or brute-force scanning techniques have to be

avoided.

Some examples of the algorithms that fit both the requirements of online processing and light-weight

complexity are:

Page 14
Confidentiality: EC Distribution

July 2015

 Background subtraction algorithms: pixel-wise analysis of the intensity or colour values to

determine whether a pixel represents the background or the foreground. The output can be

rendered as a binary mask that can be further used to determine sterile zone trespassing, size of

objects, etc.

 Optical flow: keypoint-level analysis of the apparent motion of the scene. These are typically

techniques that use only the current and previous frames to compute the differences and

determine the apparent instantaneous motion. This output flow information can be used later to

determine whether the motion is in the scene is normal or has abnormal patterns (e.g., people

running, aggressive person movements, etc.)

 Blob analysis and linear tracking: object-level analysis that can use simple connected-

component analysis to move from pixel-level or keypoint-level information (such as the provided

by the abovementioned methods) to object-level. Linear tracking methods, such as the Kalman

filter does follow the online processing philosophy and can be used to efficiently generate

trajectories of simple motions. Such analysis can provide as output sizes, speed and trajectory

information of (unknown) objects in the scene.

 Context-based scanning: brute force analysis (or sliding window scanning) is a well-known

technique that exhaustively explores the image in search of specific patterns that match a given

target object (e.g. faces, cars, etc.). The computational cost of these techniques is excessive for

embedded-platforms. However, contextual information (e.g. perspective information of the

scene, regions of interest, domain-specific rules) can be used to reduce the number of

hypotheses to explore and thus effectively exploit this type of detectors.

The Embedded System Manager (ESM) will inform to the Video Analysis module which algorithms must

be executed based on the configuration parameters. This dynamic configuration process permits the P-

REACT system to adapt the behaviour of the video analytics to the system context.

Besides the commonly used colour cameras, the P-REACT solution will also utilize depth sensors. This

type of sensors provide richer information for event detection while at the same time are privacy

preserving. On the other hand, depth processing is more computationally demanding, so it will be

included as an “advanced” Embedded System in the final solution. Furthermore, depth sensors are not

affected by issues such as such as shadows, luminance variations and partial occlusions, which affect

colour images processing disadvantages,

An approach similar to the colour images processing will be followed for depth images, towards

detecting abnormal events by processing the 3D information acquired from the depth images over time

(4D processing), aiming at human driven event detection and recognition. Furthermore, at the same

time the individual’s privacy will be respected and preserved according to EU’s ethical laws, since no

colour information will be utilized in the depth video analytics module.

Page 15
Confidentiality: EC Distribution

July 2015

Audio Analytics

Humans classify audio signals with no conscious effort. Recognizing when someone is calling for help

or focusing on a conversation even under noisy environments are relatively easy tasks for a human

but a real challenge to machines. The cognitive decomposition and understanding of an auditory

scene may become troublesome to a computer system; especially when faced with processing power

constraints. Processing of both video and audio on a limited processing power embedded platform

does not leave space for the employment of complex methods. In this section, the concepts of audio

analytics on the embedded device are briefly described.

The system captures, through a microphone, a continuous audio stream which then analyses with the

aim to detect and identify audible events of interest. Analysis of the audio stream is carried out in a

block based method where for each block, a number of spectral, cepstral and unvoiced coefficients are

extracted and used for subsequent classification. For the needs of the project, the audio analytics

module on the ES is designed to focus on the detection of certain events (screaming, glass breaking

and gun-shooting/loud explosions) as well as the detection of keywords belonging to a small dictionary

(around 10 words). Despite the fact that gun-shooting may not be considered as petty crime, it was

included in the analysis with the aim to demonstrate that the detection of versatile events is possible.

These audio triggers have been selected as they are indicative of many petty crime incidents like

assault, break-ins etc. Furthermore, the chosen audio triggers take into account the limitations of the

ES, as well as the levels of reliability, robustness of the analytic approaches. The integration of audio

analytics to the P-REACT system aims to fill the gap when video/depth analytics are not in the position

to provide results (dark environments, incidents outside the field of view, inability to detect events due

to overcrowded areas) without impacting significantly the rate of false positives. Furthermore, by

combining video and audio analytic, it is expected that false alarms will be reduced and detection rates

increases.

The implementation of event detection on the ES will be implemented with the use of a method based

on decision trees. The selection of the specific classification method depends on both the classification

accuracy as well as the required processing time. Both parameters are critical as they impact greatly

the overall performance of the system. Inadequate classification performance would result in an

increase of false positives while slow classification speed would result in overburdening the ES

resources resulting in delays and a non-real time solution.

On the other hand, keyword detection will be implemented with the deployment of pattern recognition

methods. This task is quite challenging, however, its successful completion is expected to add great

value as it will allow the triggering of the system based on predefined words that may signify important

events. In the scenario of a robbery in a shop, the system might be trained to listen to a specific

keyword (irrelevant of the event) which could allow the cashier to surreptitiously trigger the system. For

the needs of the project, a small dictionary with keywords has been generated to serve this purpose.

The dictionary contains the keywords: help, police, thief, ambulance, accident, robbery, murderer, call

Page 16
Confidentiality: EC Distribution

July 2015

911, call the cops/police, fire. The prototype of this module, within this project, is designed to support

English. However its successful operation should demonstrate the potential in its use and motivate

future projects in its development in a number of different languages.

In the event where an alarm is raised, the transfer of the extracted audio characteristics/coefficients

through the network to the cloud storage is initiated; this allows the coefficients to be available for

further analysis.

The development of a classifier that detects specific sounds is comprised of two stages, the training of

the model using prior knowledge (pre-recorded sounds) and the prediction stage at which the model is

deployed on site and is called to categorise new material (see Figure 6). During the training phase we

will consider features of sounds that we are interested in detecting, as well as background noise and

other general sounds; overall a set of collected sounds of different types and from different

environments. This process is necessary to enhance system robustness and remove any bias. The

second phase involves the deployment of the solution on the Embedded System. The necessity to

operate and take decisions in real time requires splitting the received data stream into frames of

predefined size; each frame is sequentially analysed and a set of extracted features is obtained. The

prediction module is then called to make the binary decision (i.e. the sound is indicative of event

detection). A similar approach is expected to be followed for keyword detection for the provision of a

timely method capable of producing results under a resource constrained system. The

parameterisation of the described process will be determined during the implementation of the

algorithms where a number of experiments testing the statistical validity of the results will be carried

out in an effort to ensure effective operation.

Figure 6 the diagrammatic representation of processes and tasks that take place during audio analysis.

2.1.4. Clip Object / Clip Object Generator

Clip generation refers to the production of data units containing sensors' data (named Clip Data) and

metadata (named Clip Objects). Clip Generator (CG) module is responsible for carrying out this task

and to do this, it exploits a Clip Object Generator (COG), an Integrator and a Clip Storage (CS) unit.

COG produces the Clip Objects, JSON files that not only contain information regarding the Clip(s) Data

(i.e. sensors' data) and the hosting ES but may also contain analysis data derived from the Embedded

Page 17
Confidentiality: EC Distribution

July 2015

System's analytics modules. In turn the Integrator "incubates" the Clips by merging the previously

produced Clip Object and the available Clip Data. Finally, CS is a specific folder in the Embedded

System's file system where the Clips are stored.

Figure 7. Clip Generator's conceptual overview.

2.2. Cloud

The cloud system of the P-REACT’s solution serves as a centralized node where all the embedded

systems are connected. It hosts a number of databases and a storage unit where all the uploaded clip

data is stored, as well as advanced analytics modules (video and audio). The operations on the cloud

are coordinated by an orchestration module, while the decision making is undertaken by the Business

Logic module. The architectural elements of the cloud system can be seen in the top part of Figure 1.

Over the next paragraphs, the individual architecture of the aforementioned modules will be presented.

2.2.1. Orchestration

The Orchestration component is a central point via which all communication takes place (see Figure 8).

This allows all logging operations to take place at a central location (all events pass through the

Orchestration); also serves as a single point in the system for setting, controlling and enforcing policy.

The Orchestration operates with a priority queue responsible for storing all service requests. Each

request is assigned to a priority according to how quickly needs to be serviced. This is done to allow the

separation of real-time operations (high priority) and batch operations (low priority). The main

disadvantage of such centralized systems is the heavy load of requests which a single point (the

Orchestration) is called to handle.

Page 18
Confidentiality: EC Distribution

July 2015

Figure 8 Cloud Orchestration block diagram interfacing the interconnections between modules

2.2.2. Business Logic

The Business Logic Component (aka 'Brain') is the component which manages the cameras, VCMS and

interfaces with the human operators via the GUI. It is composed by three parts are:

 Alert Raising, which decides what type of alert, should be raised. The decision is taken with input

from cloud-side video analytics and statistical analysis.

 Interaction & Control that provides feedback to the Embedded Systems. It is transferred via the

"Encryption Manager/Secure Communication" component in the form of an xml/soap object.

 Real Time monitoring, which is the point where Clips are accessed, either live Clips or stored

Clips, and displayed to the GUI. GUI/User can validate Clips.

2.2.3. Analytics Module

The analytics module on the cloud is responsible for two tasks:

1. Verify the event sent by an embedded system

2. Identify the involved persons

As in the case of the embedded system, a video and an audio sub-module will be used. The video sub-

module will utilize both colour and depth information as it is available. Also, as mentioned in Section

2.1.3 0, the raw audio signal is not transferred to the cloud due to ethical considerations, but only a set

of features is transferred.

Video Analytics

In this section we describe the architecture of the video analytics component that will reside on the cloud

Page 19
Confidentiality: EC Distribution

July 2015

subsystem of the P-REACT platform. In contrast to the Embedded System, computational resources are

not an issue at this level and therefore more intensive computer vision algorithms can be applied.

Figure 9 Video analytics components on the cloud

If an incident occurs, the video analytics component of the cloud will use the data sent by the respective

Embedded System and at first will verify the existence of the event in order to minimize the false alerts

stemming from the lack of resources at the embedded system. This will be achieved by executing

algorithms similar to the ones residing on the embedded system, but with more powerful hardware, thus

with more accuracy. By having the ES only sending clips, the privacy and fundamental rights of the

general public are more shielded. The second task of the video analytics on the cloud is to try to match

the individuals involved with its database of past incidents and/or with clips coming from Embedded

Systems neighbouring with the one that raised the alert. To achieve this, the system will employ privacy

preserving algorithms that perform face, gait and appearance recognition. If an offender is recognized,

the operator of the system will be notified to take further action. Furthermore, authorized operators of

the system will have the ability to record on demand videos from areas where an abnormal event has

occurred. All data will be stored in an encrypted database following the procedures described in

Deliverable D2.2.

Audio Analytics

The role of cloud audio analytics is to perform further analysis on the coefficients with the aim to

validate and subsequently determine the severity of the alert. Cloud analytics may be seen as a tool

for assisting Business Logic by signifying the activation of nearby ESs and also as a second level

validator to reduce the number of false positives.

Audio features are transferred to the cloud once an alarm is generated at the Embedded System.

Processing on the cloud imposes two significant advantages related to time and processing resources.

Cloud analytics still processes the available data in blocks however a larger selection of analytics

algorithms can be applied. For the needs of the project, three algorithms will be implemented on the

cloud, one method will be based on decision trees and random forests, the second one will be based

on artificial intelligence methods (neural networks, fuzzy logic), and finally a classical statistical method

Page 20
Confidentiality: EC Distribution

July 2015

based on decision boundaries. The decision of the specific algorithms to be used will be determined

during WP3 and based on the classification performance of the tested methods. However, the

selection of algorithms with different fundamentals is intended (methods deriving from decision trees,

statistical methods and computational methods) and expected to challenge the robustness of the

triggering while also providing more information on the composition of the sound.

2.2.4. Video Content Management System (VCMS)

The Video Content Management System contains structures for managing (and updating) metadata for

the fast indexing and retrieval of content while also providing functionality allowing transcoding and

playback of clips. The VCMS is responsible for handling three fundamental structures, the Clip objects,

the user objects and the analytics objects.

A Clip object is the main way of exchanging information between different components in the

architecture and is a set of key-value pairs (metadata) which describe the video and audio. The Clip

object does not contain any binary data. The binary information (aka clip data) is stored on the Open

Stack on the cloud. The Clip object contains a field which contains the URI pointing to the binary data.

Clip objects are stored in the VCMS for archiving and fast retrieval. User objects contain basic

information about each authenticated user and the analytics objects contain information about the

various analytics methods and a URI referring to the binary executables which run on the Embedded

System.

Figure 10 the VCMS system: communication between elements and possible operations

Page 21
Confidentiality: EC Distribution

July 2015

The VCMS system supports video in various formats and from multiple sources and has the ability to

archive content as well as mechanisms for both the manual manipulation and automatic processing of

content. The system may accept processing commands and provide access to data through its

Application Programming Interface (API). The API is configured and is rich enough to allow the

development of web-based graphical user interfaces (GUI) for searching, retrieving, and manipulating

video clips, for managing metadata and visualizing stored content.

2.3. Communication

Secure communication between the Cloud and the Embedded System(s) is of vital importance towards

achieving P-REACT's goals. A software module, namely the Communicator module (COM), residing

both in the Cloud and the Embedded Systems, takes over this task. In this respect, COM utilises an

Encryption Manager (EM) unit that can be used for adding extra layers of protection to the exchanged

data, a Clip Handler (CH) unit that handles the transfer of Clips and a Secure Communication Channel

Manager (SCCM) that setups an encrypted communication channel between the Embedded System

and the Cloud. SCCM will exploit OpenVPN framework, utilising either Public Key Infrastructure (PKI)

either pre-shared key approaches, towards establishing the encrypted channels whereas EM, for

keeping low the processing overhead in the Embedded System, could exploit shared keys (symmetric

encryption) created at the Cloud's EM—these keys can safely be exchanged via the encrypted

communication channel.

Figure 11 Communication Manager's conceptual overview

2.4. Privacy By Design Approach

P-REACT has undertaken a privacy-by-design approach from its early inception in order to ensure that

individuals’ privacy and protection of their personal data are taken into consideration at all stages of

systems lifecycle. The core principles for the protection of personal data, namely transparency,

proportionality, data minimization and ethical values, as they have been described in:

a. the Charter of Fundamental Rights of the European Union,

Page 22
Confidentiality: EC Distribution

July 2015

b. the European Convention for the Protection of Human Rights and Fundamental

Freedoms,

c. Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995

on the protection of individuals with regard to the processing of personal data and on the

free movement of such data and

d. EU Data Protection Regulation Reform Proposal

All the aforementioned directives have been taken into consideration when putting together both

functional and non-functional requirements, as they have been already described within D.2.2 - P-

REACT Local Embedded framework and system on the cloud requirements. Additionally, prior to the

finalization of the Conceptual Architecture, a Privacy Impact Assessment has been carried out and is

presented in D 1.5 – Privacy Impact Assessment. Within the scope of this report, the confidentiality of

data collected, processed and stored is addressed by the Encryption Manager which is presented in

Section 2.3. However it should be noted that by assessing the proportionality between (private/public)

interests to be protected, means to be used and invasion/harm for the monitored individuals we have to

take into account that we are talking about misdemeanour infractions such as shoplifting and minor

cases of public disturbance and not “serious crimes”.

Regarding the risks of stigmatization and discrimination, due to the fact that P-REACT is based on

CCTV, it is a possibility that data revealing race or ethnic origin, political opinions, religion or beliefs,

data concerning health or sex orientation/life. We take all the necessary measures in order to avoid

invasion of privacy, revealing of sensitive (categories) of data and consequently risks of stigmatization

and discrimination. Adopting the definition used within the Council of Europe - Application of Convention

108 to the profiling mechanism document1, originally proposed by Bygrave, 2001 [1] “profiling is the

process of inferring a set of characteristics (typically behavioural) about an individual person or

collective entity and then treating that person/entity (or other persons/entities) in the light of these

characteristics. As such, the profiling process has two main components: (i) profile generation – the

process of inferring a profile; (ii) profile application – the process of treating persons/entities in light of

this profile. Three stages are therefore necessary in order to perform what we call profiling:

 large quantities of digitised data from observation of the behaviour and characteristics of

individuals,

 determination of the probability relations (correlations) between certain

behaviours/characteristics and other behaviours or characteristics,

 Inference, based on certain behavioural variables or observable characteristics of an individual

identified in general terms, of new characteristics or past, present or future behavioural

variables.

As discussed on Section 2.1.3, the embedded platforms will employ algorithms based on unobtrusive

1
 http://www.coe.int/t/dghl/standardsetting/dataprotection/Reports/CRID_Profiling_2008_en.pdf

Page 23
Confidentiality: EC Distribution

July 2015

features such as motion and depth information, as expressed from point trajectories and depth maps.

Only in the case of an abnormal event will the Embedded System send a clip object to the cloud along

with all relevant information (audio signal, depth map etc.), in order to perform "subject" identification

and only reveal data to competent and authorised individuals under the necessary procedural, legal and

judicial authorisation. Also, as already mentioned, in order to avoid stigmatization, extra steps to ensure

a minimal false alarm rate will be taken, by validating the existence of an event on the cloud, and if the

event is not verified, all relevant data will be deleted.

3. Functional View

The functional view of software architecture defines the architectural elements that deliver the system’s

functionality. The functional view documents the system’s functional structure that demonstrates how

the system will perform the functions required. According to Rozanski & Woods [33], the functional

structure model of the Functional View typically contains functional elements, interfaces and external

entities/ connectors:

 Functional Elements constitute well-defined parts of the system that have particular

responsibilities and expose interfaces that allow them to be connected to other elements. A

functional element can be a software component, an application package, a data store, or even

a complete system.

 Interfaces are specifications, defining how the functions of an element can be accessed by other

elements. An interface is defined by the inputs, outputs, and semantics of each operation offered

and the nature of the interaction needed to invoke the operation.

 External Entities are connectors which can represent other systems, software programs,

hardware devices, or any other entity the system communicates with. These are described as

dependencies to other systems or components.

3.1. Embedded System

In the following subsections the functional view of the Embedded System’s modules will be presented.

3.1.1. Embedded System Manager

 As illustrated in the Section 2.1.1 and depicted in the following figure, ESM utilises a number of

Databases, a Controller and several communication interfaces, towards coordinating Embedded

System's (ES) components to perform efficiently their tasks. As a result, ESM interacts with the

Analytics modules towards enabling access to the Sensors data, receiving the Analytics results, and

(re)configuring the Analytics algorithms and techniques. The outcome of the last two interactions is

stored to the Analytics Results and Analytics DBs respectively. In the same fashion, ESM exchanges

messages with the Sensors Manager towards requesting, on behalf of the local Analytics modules or

Page 24
Confidentiality: EC Distribution

July 2015

even the Cloud's, data of a specific sensor. Furthermore, ESM can request the (re)configuration of the

Sensors. If ESM's internal "logic" decides that a possible petty crime incident occurs, the Clip Generator

is activated and the generated Clips are uploaded to the Cloud via the Communicator module.

Figure 12 Embedded System Manager's functional overview

In summary the following interfaces are utilised for the communication with the rest of ES components:

1. Sensors Manager:

a. send_sensor_data_request(): This interface allows ESM to send a message requesting, on

behalf of Analytics modules or even the Cloud, data from a specific sensor. The request

indicates if the data will be offered in the form of network streams, or files, or both.

b. receive_sensor_data_metadata(): This interface enables ESM to receive from SM the

results of the sensor data request. If the operation was successful, the response contains

metadata describing the offered Sensor's data, otherwise the response indicates the failure.

c. send_sensor_configuration_request(): This interface will allow ESM to request, itself or

behalf of others, a change in the sensors configuration.

d. receive_sensor_configuration(): This interface enables ESM to receive from SM the results

of the configuration request.

2. Analytics:

a. receive_sensor_data_request(): This interface allows ESM to receive the Analytics requests

from a specific sensor's data.

b. receive_analytics_results(): This interface allows ESM to receive the Analytics results.

Page 25
Confidentiality: EC Distribution

July 2015

c. send_configure_analytics(): This interface allows ESM to (re)configure the Analytics

running on the ES.

3. Clip Generator:

a. send_generate_clip(): This interface allows ESM to inform Clip Generator to initiate or halt

the production of Clips.

b. receive_clip_metadata(): This interface enables ESM to receive metadata for every

generated Clip.

c. receive_clip_data_uris_request(): This interface allows ESM to receive a request for the

Uris of the Clip data that will be part of the next to be generated Clip.

d. receive_analytics_metadata_request(): This interface allows ESM to receive a request for

the Analytics metadata (if any) that will be part of the next to be generated Clip.

4. Communicator:

a. send_upload_clip_request(): This interface enables ESM to request the upload of a Clip to

the Cloud.

b. receive_clip_upload_status(): This interface enables ESM to receive from the

Communicator information regarding the uploading of a Clip to the Cloud.

c. send_channel_setup_request(): This interface enables ESM to send to Communicator a

request for setting up the secure communication channel.

d. send_channel_status_request(): This interface enables ESM to inquire Communicator

about the status of the secure communication channel.

5. Internal:

a. store_clip_metadata(): It stores the Clip metadata to the Clip DB.

b. store_sensors_metadata(): It stores the Sensors metadata to the Sensors DB.

c. store_analytics_metadata(): It stores the Analytics metadata to the Analytics DB.

d. store_credentials_data(): It stores the credentials data to the Credentials DB.

e. store_sensors_data_metadata(): It stores the Sensors' data metadata to the Sensors Data

DB.

f. store_analytics_results(): It stores the Analytics results to the Analytics Results DB

3.1.2. Sensor Manager

Sensor Manager (SM) comprises of two main processing units, namely the Sensors Data Streamer

(SDS) and the Sensors Configurator (SC) units (see2.1.2); several external and internal communication

interfaces; and one Storage place for saving the actual Clip data (e.g. Video Clips).

Page 26
Confidentiality: EC Distribution

July 2015

Figure 13 Sensor Manager's functional overview

In more detail, Sensors Data Streamer (SDS) is the component responsible for interacting with the

Embedded System's (ES) sensors for getting their data. In this context SDS, after receiving a request

from the Embedded System Manager (ESM) for the sensors' data (e.g., Video, Audio), captures this

data by exploiting the information (e.g. sensor's access URI) contained in the request message and

then streams them to the local Video Analytics modules (also to the Cloud's ones, if the request

message indicates so) besides storing them as clips, for a finite amount of time, in the Clip Data

Storage. Furthermore, SDS generates, for each stream and clip, metadata describing their attributes

(e.g. Video/Audio codec, bitrate, access URI, etc.) and sends them to ESM via the appropriate interface.

On the other hand, Sensors Configurator (SC), as the name implies, is used for (re)configuring ES

sensors, a process that is related to the sensors capabilities and can be initiated upon a remote (Cloud)

or local (ESM) request. Upon a successful (re)configuration SC creates a message containing the new

Sensor configuration and sends it to ESM.

In summary the following interfaces are utilised for the communication with the rest of ES components:

1. ESM:

 receive_sensor_data_request(): This interface allows SM to receive a message from

ESM requesting, a specific sensor's data. The request indicates if the data will be

offered in form of network streams, or files, or both.

 send_sensor_data_metadata(): This interface enables SM to inform ESM about the

results of the sensor data request. If the operation was successful, the response

contains metadata describing the offered sensor's data otherwise the response

indicates the failure.

Page 27
Confidentiality: EC Distribution

July 2015

 receive_sensor_configuration_request(): This interface allows SM to receive a

message from ESM, requesting a change in the sensors configuration.

 send_sensor_configuration(): This interface enables SM to inform ESM the results of

the configuration request.

2. Sensors:

 get_sensor_data(): This interface allows SM to get and offer the Sensor's data

conforming to the received message of sensor data request.

 configure_sensor(): This interface allows SM to configure the sensors according to

the received configuration request.

3. Clip Generator:

 receive_clip_data_request(): This interface allows the Clip Generator to get in hand

the available Clip Data.

4. Internal:

 store_clip_data(): It stores the Clip Data to the storage folder.

3.1.3. Analytics Modules

In the following sections, the functional view of the analytics modules for the embedded system will be

presented. The analytics on the embedded system that will be developed are divided in two main

categories: (1) video and (2) audio analytics. For the video analytics, the methods that will be developed

include:

1. Motion Detection, where motion will be detected in restricted areas

2. Fighting detection: two or more people fighting

3. Chasing detection: two or more people chasing

4. Bag Snatching: one or more people steal a bag from another

Audio analytics will include the following methods:

1. Keyword detection, where a set of predefined words will be detected as an alarm

2. Screaming

3. Glass breaking, such as windows

4. Gun shots/loud explosions

Page 28
Confidentiality: EC Distribution

July 2015

Figure 14 Video Analytics module functional overview

Video Analytics

In designing the architecture of the video analytics module, the limited computational resources of the

Embedded System were taken into account and incorporated a throughput control mechanism that

ensures the real time operation of the system while at the same time utilizes its maximum potential.

Another underlying principle of the design that speeds up the processing pipeline is that the interfaces

between the components should consist of data structures residing exclusively on the primary memory

of the Embedded System. Moreover, the described architecture provides a local storage mechanism

for redundancy in the unlikely event of a severed network connection, as is described in Deliverable

D2.2. The functional view of the video analytics module is illustrated in Figure 14.

Figure 15 Initial RGB Frame

Figure 16 Background subtraction

Figure 17 Foreground denoising

Figure 18 Optical flow field

The input to the video analytics module consists of raw sensory data coming from RGB/IR and is stored in

Page 29
Confidentiality: EC Distribution

July 2015

the primary memory of the system on a video buffer. This buffer contains the information provided in the

past seconds and the duration of the covered time period depends on technical specifications of the

system, such as the amount of available memory and the camera’s resolution. Initially the background will

be subtracted from the data, in order to limit further processing only on the extracted foreground Regions of

Interest (ROIs). Background subtraction can easily be performed robustly in real time without exhausting

the resources of the system. The background model of this component will be dynamically updated in order

to adjust to common variations of the background, such as illumination changes and repetitive motions from

clutter [23], [24]. To remove any spurious artefacts on the detected foreground regions, simple

morphological operations such as erosion and dilation can be applied [25] with negligible computational

cost. Simple examples of these operations are depicted in Figure 16 and Figure 17.

As is depicted in Figure 17, the interface between the background subtraction and the optical flow

component is a binary image containing the extracted ROIs. This image is stored in the primary memory of

the system. The next functional element of the module computes the optical flow of the ROIs. It should be

noted that this component connects with frame rate control, in order to ensure the real time operation of the

system. If at any time instance, the frame throughput of the system decreases due to increased coverage

of the ROIs, frame rate control will reduce the density of the optical flow. Optical flow builds on the

assumption that the appearance of a point is constant between consecutive frames and by searching for

similarly looking pixels across the frames one can infer the motion of the points [26] [27]. As a result, a

point correspondence matrix is produced for the two frames. This matrix is also known as the optical flow

field. The optical flow field of a single frame is shown in Figure 18.

The optical flow field is sent by the optical flow component to the trajectory extraction component as an

array in primary memory. The task of the trajectory extraction component is to use the flow field in order to

form long term point trajectories. The optical flow field can be used to compute the motion of any point on a

region that is adequately covered through linear interpolation. Trajectories corresponding to new keypoints

are added, while other trajectories are terminated if they exit the field of view (FOV) of the camera.

Keypoints are initialised using a mesh grid where points with low texture are removed by using a simple

keypoint detection algorithm such as the Harris corner detector [28]. The texture of a point is easily

computed from the gradient of a frame after a Sobel filter is applied [25]. Furthermore, trajectories are

terminated if the texture of the corresponding pixels becomes too low. The system stores the trajectories in

an internal buffer on the primary memory which contains the more recent trajectories up to a certain frame

in the past. The time period that the stored trajectories cover, depends on both the technical specifications

of the system such as the amount of memory and the camera resolution, as well as on runtime parameters

related to the texture of the objects that appear on the scene and the coverage of the detected ROIs.

Another component of the video analytics module is that of human detection. This subsystem will be

applied on the ROIs of a few frames and detect regions where human are likely to exist. One of the most

effective algorithms for this task is presented in [29] where Histograms of Oriented Gradient (HOG)

descriptors are used. The operation of this component will be overseen by the frame rate control

subsystem, which will allow the human detection algorithm to run only when the necessary computational

Page 30
Confidentiality: EC Distribution

July 2015

resources are available. Optionally, a component producing the disparity map of the scene may be present

in case a depth sensor is available. The information of the trajectories the human detection and the

disparity will be fused in order to perform multi target tracking in a similar manner to [30], which can resolve

occlusion cases (like people passing behind cars or each other, thus hiding from the cameras for a little

time) that are of special interest for the P-REACT platform. Although human tracking is sparse along the

temporal axis, P-REACT system using the computed trajectories will interpolate the position of the detected

individuals in every frame. The output of these methods will be used in order to detect various abnormal

events. In order to achieve this, a hierarchy of classes deriving from the concept of Event Detector will be

created. Online and offline derivations will be implemented to support both embedded and cloud-level

analytics, respectively. Although there might be several many ways to implement such event detectors (e.g.

using stochastic or Markovian filters for the online case, or batch execution processes for the offline case),

we want to focus on the “Rule Manager” concept, that represents the core functionality of the video

analytics at this level. For each specific location, the Rule Manager can be fed with one or more Rules,

each of them configured to detect a given event (or set of events), and optionally parameterized with

contextual information from the scene.

The implementation of the Rule Manager will be done to be as flexible and scalable as possible, so that

new Rules can be added dynamically, or existing Rules can be configured to be applied with different

parameters or into different regions of the image, etc.

Figure 19 Basic UML diagram of the Rule Manager approach for video analytics. Online (for embedded) and offline (for cloud-level)

The Online Rule Manager is then a module that reads images in a sequential manner, and feeds these

images into the Rules to update their status. Each Rule generates one or more events, which can be active

or inactive.

Figure 19 shows the basic UML diagram of the proposed Rule Manager architecture. This picture illustrates

the abstract base class EventDetector, and the derived classes OnlineEventDetector and

OfflineEventDetector, which can be applied at the embedded level and the cloud level, respectively. These

Page 31
Confidentiality: EC Distribution

July 2015

classes just define the type of information they can compute, i.e. the list of events, and in the case of the

OnlineEventDetector, a list with active events and the list of inactive or completed events.

The implementation of such detectors can be done with Rule Managers: OnlineRuleManager and

OfflineRuleManager, although other approaches could be used instead as illustrated by the

StochasticEventDetector or the BatchEventDetector classes in the figure. These managers are structures

that are simply configured to launch a number of Rules (OnlineRule and OfflineRule, for each case), and

handle the birth, death and update of events.

As an example, the Rule Manager can be launched and connected to the following Rules:

 RuleRapidMotion: This rule computes and analyses the optical flow of the scene to learn motion

patterns and trigger alarms when the motion is faster than normal.

 RuleTrespassing: Provided a region of interest that determines the existence of a sterile zone, this

rule can determine when a trespasser is present in the given ROI using background extraction.

 RulePerson: Using human detection algorithms, this rule can trigger an alarm or message when a

person is detected in the images.

 RuleGroupPersons: Detecting individuals can lead to the detection of groups when they get close.

 RuleOpposingFlow: Individuals walking in the opposite direction of the main flow, or in a direction

that is forbidden.

The type of event is eventually defined by the available information about the scene, which can be provided

during the installation stage of the system (e.g. set up a camera and define that is looking closely to a

door), or automatically with the processing algorithms (e.g. using person detectors). Normally, the main

actors of these scenes are the persons, therefore, events will typically relate to activities of individuals

and/or groups.

The ability of the P-REACT system to remotely configure the embedded-platform naturally fits with the Rule

Manager concept because different Rules and parameters can be defined dynamically from the cloud via

the ESM.

The functional elements of this module are therefore:

 OnlineRuleManager: Which aggregates Rules and launches them.

 OnlineRule: Abstract class for implementing new Rules

 Set of preloaded Rules

The interfaces are:

 Input interface: Video stream in the form of a sequence of images received sequentially at a given

input frame rate, required analysis type.

 Output interface: Updated list of evidences detected by the Rule Manager that can be exported to

Page 32
Confidentiality: EC Distribution

July 2015

JSON files at each frame time. A running log file is created with the information of all the detected

events.

External entities:

 Contextual information: Camera and/or scene calibration

 Parameter/Config files: Preloaded or dynamically set by the P-REACT system through the ESM, to

start or reset Rules and their behaviour.

The aforementioned approach for colour images will be developed collaboratively by CERTH and

VICOMTECH and will result in a common video analytics module while a similar approach will be followed

for depth images processing.

Audio Analytics

The functional view of the audio analytics module is shown in Figure 20. The continuous stream enters

the lightweight analytics module on the embedded system. The audio is split into discrete blocks whose

length will be determined during the algorithms performance in the simulated experiments while

overlapping may also be introduced if it is found that assist in the overall performance of the system.

Feature extraction then takes place discriminating between voiced and unvoiced characteristics. This step

is essential as event detection involves both voiced (screaming) and unvoiced (e.g. loud noises,gun

shooting, glass breaking) events. The extracted features are then combined into a single vector which

serves as the input for a number of binary classifiers. Each classifier is trained to distinguish between two

events/situations. The results of this stage are then forwarded to another module which is responsible for

producing the overall classification label. This module takes into consideration correlations between the

different categories and adds another level of results validation. The output of this module passes through

a conditional test and if an alert is detected with a reasonable confidence the generation of the JSON

object with alarm specific information is initiated and forwarded to the ES manager for further action.

The parameterisation of attributes and processes described will be determined during the implementation

of the algorithms where a number of experiments testing the statistical validity of the results will be carried

out in an effort to ensure effective operation.

Page 33
Confidentiality: EC Distribution

July 2015

Figure 20 Embedded System Audio Analytics Functional View

3.1.4. Event Detection

The task of the event detection module will be to fuse the information from the various analytics modules of

the Embedded System in order to make the final decision whether an abnormal event has occurred and

notify the clip generator to create a clip and send it to the cloud. For the design of this module the limited

computational resources of the Embedded System were taken into account, and avoided computationally

intensive activity recognition algorithms that could hinder the real time operation of the system.

3.1.5. Clip Object / Clip Object Generator

In this section, Clip Generator's (CG) components and communication interfaces are presented. As the

following figure depicts, CG comprises of two main processing units, namely the Clip Object Generator

(COG) and the Integrator units; several external and internal communication interfaces; and one Database

(Clip Storage) for storing the generated Clips.

 More specifically, when a request for Clip Generation is received from the Embedded Systems Manager

(ESM), COG gets any metadata produced from the local Analytics along with the Clip(s) Data Uris and

produces the Clip Object (JSON metadata file). The Integrator unit merges the Clip Object and the Clip(s)

Data to one Clip and then stores it to the Clip Storage, besides informing ESM for the newly created Clip.

Until ESM emits a deactivation signal the process is repeated for the newly created Clip Data. It is noted

that the Clips are stored for a finite amount of time (usually until they are uploaded to the Cloud).

Page 34
Confidentiality: EC Distribution

July 2015

Figure 21 Clip Generator functional overview

In summary, the following interfaces are utilised for the communication with the rest of ES components:

1. Communicator:

a. receive_clip_request(): This interface enables the Communicator to get the Clip from its

storage and to upload it on the Cloud.

2. ESM:

a. receive_generate_clip(): This interface allows CG to receive from ESM a request for initiating

or halting Clip generation.

b. send_clip_metadata(): This interface enables CG to send to ESM metadata for every

generated Clip.

c. send_clip_data_uris_request(): This interface allows CG to find out what Clip Data will be part

of the next to be generated Clip.

d. send_analytics_metadata_request(): This interface send to ESM a request for the Analytics

metadata (if any) that will be part of the next to be generated Clip.

e. receive_delete_clip(): This interface enables for the Clip deletion when it is not needed

anymore.

Page 35
Confidentiality: EC Distribution

July 2015

3. Internal:

a. store_clip(): It stores the Clip to the Clip Storage.

b. pass_clip_object(): It passes the generated Clip object to the Integrator.

3.2. Communication Module

 In this section, the functional view of Communicator module is presented. This module is responsible for

the secure exchange of data between the Cloud and the Embedded Systems (ES). Communicator

comprises of three main processing units, namely the Secure Communication Channel Manager (SCCM),

the Clip Handler (CH) and the Encryption Manager (EM) units, but as the following two figures depict

Communicator's functional view varies according to its operating place (Cloud or Embedded side). The

following subsections elaborate on the functional view of each unit.

Figure 22 (Embedded System) Communicator - Functional overview

3.2.1. Encryption Manager

The Encryption Manager (EM) is activated when additional layers of protection are required for the data

(e.g. Clips, messages) exchanged between the Cloud and the Embedded Systems. EM stores the relevant

encryption keys (Private Keys, Public Keys), and handles key management operations (generation of new

keys, revocation of old keys). When an Embedded System needs to send encrypted data, the Embedded

System Manager requests from EM to encrypt the data prior forwarding them to the communication

channel.

Page 36
Confidentiality: EC Distribution

July 2015

Figure 23 (Cloud) Communicator - Functional overview

Figure 24 (Embedded System) Encryption Manager - Functional overview

Figure 25 (Cloud) Encryption Manager - Functional overview

Page 37
Confidentiality: EC Distribution

July 2015

In summary the following interfaces are utilised for the Embedded System's Encryption manager:

1. ESM:

a. receive_encrypt_clip_request(): This interface enables EM to receive from ESM a request

for encrypting a specific Clip.

b. send_encryption_result(): This interface enables EM to inform ESM for the encryption

results.

2. Clip Generator:

a. encrypt_clip(): This interface enables EM to perform the encryption operation.

3. Cloud Communicator:

a. exchange_encryption_keys(): This interface enables the Cloud's and Embedded System's

Communicators to get the appropriate keys for encrypting and decrypting the transferred

Clips.

Whereas the following interfaces are utilised for the Cloud's Encryption manager:

1. Embedded System Communicator:

a. exchange_encryption_keys(): This interface enables the Cloud's and Embedded System's

Communicators to get the appropriate keys for encrypting and decrypting the transferred

Clips.

2. Internal:

a. decrypt_clip(): This interface enables for the decryption of the received encrypted Clips.

3.2.2. Secure Communications

In this section, Secure Communication Channel Manager (SCCM) unit is presented from functional point of

view. SCCM is the unit that provides the secure communications between the Embedded System (ES) and

the Cloud. To achieve this, SCCM builds on OpenVPN framework, supporting both Public Key

Infrastructure (PKI) and pre-shared key approaches.

Figure 26 (Embedded System) SCCM - Functional overview

Page 38
Confidentiality: EC Distribution

July 2015

Figure 27 (Cloud) SCCM - Functional overview

In summary the following interfaces are utilised for the Embedded System's SCCM:

1. ESM:

a. receive_channel_setup_request(): This interface enables Communicator to receive from ESM

a request for setting up the secure communication channel.

b. receive_channel_status_request(): This interface enables Communicator to receive from ESM

a request for the status of the secure communication channel.

2. Cloud:

a. set_encrypted channel(): This interface initiates the negotiation and establishment of an

encrypted channel with the Cloud based on OpenVPN framework.

Whereas the following interfaces are utilised for the Cloud's SCCM:

1. Embedded System Communicator:

a. receive_channel_setup_request(): This interface enables Cloud's SCCM to receive from

Embedded System's SCCM a request for setting up a secure communication channel.

b. set_encrypted channel(): This interface initiates the negotiation and establishment of an

encrypted channel with the Embedded System based on OpenVPN framework.

2. Orchestrator:

a. receive_channel_status_request(): This interface enables SCCM to receive from

Orchestrator a request for the status of the secure communication channel.

3.2.3. Clip Handler

This section presents the functional overview of Clip Handler, the module that manages the Clip transfer

operation. Whenever a new Clip is generated at the Embedded System (ES) level, the Embedded System

Manager (ESM) instructs Clip Handler to transfer the Clip to the Cloud. There the respective Clip Handler

receives the Clip, if the Clip is encrypted requests a decryption from the Encryption Manager, and sends

Page 39
Confidentiality: EC Distribution

July 2015

the contained Clip Data and Clip Object to the Cloud Storage and to the Orchestrator respectively.

Figure 28 (Embedded System) Clip Handler - Functional overview

In summary the following interfaces are utilised for the Embedded System's Clip Handler:

1. ESM:

a. receive_upload_clip_request(): This interface enables Clip Handler to receive from ESM a

request for uploading a Clip to the Cloud.

2. Cloud Communicator:

a. upload_clip(): This interface realises the Clip's transfer to the Cloud.

3. Clip Generator:

Figure 29 (Cloud) Clip Handler - Functional overview

a. get_clip(): This interface retrieves the Clip form Clip Generator's Storage.

 Whereas the following interfaces are utilised for the Cloud's Clip Handler:

1. Embedded System Communicator:

a. receive_clip(): This interface enables Cloud's Clip Handler to receive a Clip.

b. set_encrypted channel(): This interface initiates the negotiation and establishment of an

encrypted channel with the Embedded System based on OpenVPN framework.

2. Orchestrator:

a. send_clip_object(): This interface enables Clip Handler to send to Orchestrator a Clip Object.

Page 40
Confidentiality: EC Distribution

July 2015

3. Cloud Storage:

a. store_clip_data(): This interface enables Clip Handler to store to Orchestrator the Clip Data.

4. Internal:

a. decrypt_clip(): This interface enables for the decryption of an incoming encrypted Clip.

3.3. Cloud

3.3.1. Orchestration

The Orchestration module exposes an API to allow for communication between it and the other various

modules that comprise the P-REACT system. It provides an extensive set of functions that allow

management of clips, embedded systems and more. As the developments proceed, these functionalities

will be extended in order to facilitate any new needs of the system. A detailed documentation of the

currently supported functionalities of the API is presented in ANNEX I, while a graphical representation of

the interfaces between the Orchestrator and the rest of the Cloud modules is presented in Figure 30.

Figure 30 Cloud module organisation showing interface relationships

3.3.2. Situational Awareness

Decision and control is performed by the Business logic component shown in Figure 30. This component is

responsible for receiving a new clip object, decide on what type of analytics should be used in each case,

receive the result of the analytics modules and determine what further actions are required.

3.3.3. Analytics Modules

As was the case in the embedded system, on the cloud side the analytics module is divided into two main

categories: (1) video and (2) audio.

For the video analytics, the methods that will be used in the cloud are the same ones as in the embedded

Page 41
Confidentiality: EC Distribution

July 2015

system but with different configuration (since on the cloud there are more resources available) that will

allow a more detailed analysis, in order to verify the existence of an event (thus eliminating false alarms),

plus a set of more advanced methods that will allow the identification of the suspects in other clips (either

stored in the VCMS or coming from other embedded systems). These methods include:

1. Gait analysis: Identification of a person from his/hers walking pattern

2. Face analysis: Identification of a person from his/hers facial characteristics

3. Geometry based identification: that will identify a person based on his/hers upper body

geometry

Audio analytics on the cloud will be used in order to validate the existence of an event thus eliminating false

alarms.

Video Analytics

The video analytics module residing on the cloud platform will receive its input from the various Embedded

Systems hooked on the P-REACT platform through a secure channel. Its main aim will be to identify

offenders without resorting to techniques that violate the privacy of the general public but also to validate

the existence of the event that was reported. Its functional view is shown in Figure 31.

To perform its task the video analytics module will rely on RGB and/or Depth information to perform gait,

face and appearance based recognition on the corresponding components. Then, using the produced

information, it will search on its archive of past abnormal events as well as in new clips coming from

neighbouring embedded systems in order to identify the people involved in the current event. The results of

its operation will be sent to the decision and control module where an analyst will be notified as to the video

content management system module.

Figure 31 Functional view of the video analytics module on the cloud

The information arriving to the video analytics at the cloud-level are video clips which contain both visual

information (the images) and additional metadata with the result of the process of the embedded-level plus

Page 42
Confidentiality: EC Distribution

July 2015

other administrative metadata (location, time, etc.).

The analysis can be done according to at least two main functionalities: (i) search and (ii) re-analyse.

The search analysis can receive a single sample clip, and return a map to existing clips stored in the

database or coming from other embedded systems with associated match indicators that determine the

correlation or similarity with the sample.

Regarding the re-analyse capability, the same Rule Manager concept can be applied as in the embedded-

level. The main difference is that the Rule Manager can contain Rule execution configurations not

necessarily sequential in time, and that Rules can contain more complex analysis of the information.

The functional elements of this module are therefore:

 Search functionality:

o Video descriptor: Converts the given clip into a descriptor using feature extractors.

o Classifier: Compares two feature vectors using a classifier to determine the match level.

o Classifier trainer: This is the module that learns models from the stored data and is updated

when new data is stored.

 Re-analysis or enhanced analysis

o OfflineRuleManager: Equivalent version of the Rule Manager at the embedded-level, but

with an offline nature.

o OfflineRule: Base class from which specific Rules can derive.

o Set of preloaded Rules: For instance with specific algorithms to verify the presence of

objects according to their appearance (e.g. persons, faces),

The interfaces are:

 Input interface: Input video clip with metadata, analysis type to be processed (defined by the

Business Logic)

 Output interface: Updated metadata for clips; list of matching levels and links to existing videos in

dataset; trained models.

External entities:

 Video clip database: With the video and metadata (cloud storage and VCMS databases)

 Trained classifiers/models: The classifiers train models that are stored in the cloud (Cloud Storage),

and updated when new clips are available.

 Parameter/Config files: Preloaded or dynamically set by the P-REACT system, to start or reset

Rules and their behaviour.

Page 43
Confidentiality: EC Distribution

July 2015

Figure 32 Cloud Side Audio Analytics Functional View

Audio Analytics

The audio analytics on the cloud accepts an analysis request with the clipObject of interest. The analytics

module will proceed with the retrieval of the data by reading from the URI location specified in the clipData

field of the clipObject. Depending on the specified analytics algorithm ID, the analytics module proceeds

with the analysis of the data with that specific algorithm. Upon the completion of analysis, the output is

structured according to the specifications and the analytics module proceeds communication with the

orchestrator by providing the input clipObject as well as the analysis results. This process is depicted in

Figure 32

3.3.4. VCMS

The VCMS is commonly called by the Orchestration module through its API and available methods. The

implemented API supports a number of different functions for managing users and clip objects. An

extensive list of the supported functions and their description is provided in ANNEX II

4. Development View

For the development viewpoint we describe how we handle revision control of source code files in a

centralized repository and aspects of the development process to enhance the quality of the software.

Further we provide an overview of the modules technical requirements and dependencies.

4.1. Key Components Development

In this section we provide an overview of the responsible partners and the technical requirements and

dependencies for each key component. In Figure 33, the responsible partner of each of the components of

the previously presented system architecture is shown.

Although the system’s architecture is modular, and each module seems to be independent, there is a very

strong interaction during the development, and this is due to the fact that each module determines and

depends on various parameters and requirements for one or more other modules.

Page 44
Confidentiality: EC Distribution

July 2015

Figure 33 System Architecture with components responsible partners

Starting from the embedded system, Future Intelligence (FINT) is responsible for developing the main

components, which include the system manager, the sensors manager as well as the clip generator and

the communications module. In order to achieve this goal, the hardware requirements for the sensors will

first be defined, as well as the software requirements for the analytics modules (both video and audio). The

latter also determined the hardware specifications of the embedded system. Since the requirements for the

audio analysis are much less than for video, the video analytics module plays a more important role in

determining the hardware requirements. In the P-REACT system, both colour and depth sensors are going

to be used. The colour sensors in general require less computing power for analysing their provided data

(colour images) than the depth sensors. For this, two variations of the embedded system are going to be

build: a basic one that will be utilized with colour cameras and audio, and a more advanced one, that will be

used for depth analysis and audio.

The audio analytics module will be developed by ADITESS while the video analytics by Vicomtech and

Center for Research and Technology Hellas (CERTH). More specifically, Vicomtech will focus on a video

analytics module for colour cameras and CERTH will focus on analysing depth information, while keeping a

high level of collaboration.

On the cloud side, FINT is responsible for developing the main infrastructure, which includes the actual

Page 45
Confidentiality: EC Distribution

July 2015

cloud system, the network and the communications modules. This requires input from the partners that are

responsible for the rest of the modules. More specifically, the Orchestration module, (see section 2.2.1 for

description) is built by ADITESS, the Business Logic component (section 2.2.2) by Kinesense (KS), the

video analytics by Vicomtech and CERTH and the audio analytics (section2.2.3) by ADITESS. ADITESS is

also responsible for developing the Video Content Management System as well as the cloud storage where

the actual clip data will be stored. As was the case in the embedded system, the modules of the cloud

system are also not independent from a development point of view.

The development of the various components of the system started in project month 5, so by the time the

present deliverable was prepared (Project Month 10) the modules are still in beta versions. Despite being

still in beta version, a complete integrated test including most of the modules has been performed,

identifying the weak spots and ensuring that collaboration between the responsible partners is at a very

high level and the requirements set by each module are met.

4.2. Source Code and Configuration Management

4.2.1. Source Code Management with Git

During the development phase of the project, the revision control system 'Git' will be used to manage all

changes to code. Git is a distributed revision control system with an emphasis on speed, data integrity, and

support for distributed, non-linear workflows. A centralized workflow will be adopted while developing for

the project using a central repository to serve as the single point-of-entry for all changes to the project.

Developers have to create a local copy of the central repository. That is accomplished via the git clone

command.

While working on a local copy of the project, it is possible to view the current state of the repository via the

git status command, add some files to your staging area via the git add command and commit changes via

the git commit command.

In their own local copies of the project, developers can edit files and commit changes. Once they finish

committing changes, which are stored locally, they can publish changes to the official project by pushing

their changes to the central repository. Pushing changes to the central repository is accomplished via the

git push command.

As illustrated in the next figure, all current code repositories (DemosCode, Embedded-Side, Brain

(Business Logic Component), Orchestration and Cloud-Side (C#)) is hosted online on Bitbucket using a

private centralized team account which makes managing repositories easier for multiple developers.

Page 46
Confidentiality: EC Distribution

July 2015

Figure 34 Bitbucket P-REACT team overview showing all available repositories

Bitbucket provides, among others, unlimited private repositories, online browsing and search functionalities

for all the repositories as well as simplified user management.

Figure 35 Bitbucket online code snippet browsing

4.2.2. Coding Conventions

The coding conventions that have been decided so far are the following:

 Information between different modules will be exchanged using JSON objects

 GUID’s will be used as object identifiers

 Date/Time fields will be using ISO 8601 format (YYYY-MM-DDYHH-MM-SSTZ) or UNIX

timestamps.

More coding conventions will be added as the development continues, and the complete list will be

Page 47
Confidentiality: EC Distribution

July 2015

included in System Integration report Deliverable (D4.1)

4.2.3. Use of Existing Software

In this paragraph, the existing software that will be used in the P-REACT’s solution is presented. This

includes the libraries, Application Programming Interfaces (API’s) and Software Development Kits (SDK’s)

that are required to develop the project’s solution.

 OpenCV, open source computer vision library, (used for basic image processing and computer

vision algorithms) http://opencv.org/downloads.html

 Viulib, Vicomtech's Vision and Image Understanding Library, (used for advanced computer vision

algorithms) http://www.vicomtech.org/viulib

 Gstreamer, open source video and audio capturing, (used for capturing video and camera

streams) http://gstreamer.freedesktop.org/

 Videoman, open source video capture and rendering library, (used for capturing and rendering

video streams) http://videomanlib.sourceforge.net/

 tinyxml2, open source lightweight parsing library for XML files, (used to easy read/write parameter

files) http://www.grinninglizard.com/tinyxml2/

 Qt, cross-platform framework, (used in GUI applications for calibration tools) http://qt-project.org/

 Gstreamer, open source multimedia framework, (used for getting, streaming and saving the

sensors' A/V data) http://gstreamer.freedesktop.org/

 Glib, general-purpose utility library (used for the advanced data types and string/file utilities it

provides) https://developer.gnome.org/glib/2.42/

 GIO, Virtual File system and Networking API, (used for taking into account the exchanging info

between the SW modules) https://developer.gnome.org/gio/stable/

 JSON-GLib, JSON library (used for reading/writing from/to the JSON files)

https://developer.gnome.org/json-glib/stable/

 libtar, library for handling tar files, (used for the creation of the Clip object (metadata+sensors'

data)) http://www.feep.net/libtar/

 Microsoft Kinect SDK, used to enable data capture and processing from the Kinect v2 sensor

 Spring, deployed for the implementation of web services (see http://spring.io/guides/gs/rest-

service/)

 Weka, for machine learning (see http://www.cs.waikato.ac.nz/ml/weka/)

Regarding the operating system, the Embedded System will be based on Linux (Debian, www.debian.org),

while an advanced one will be based on Windows 8 (required for the use of the Kinect v2 sensor).

On the cloud side, a number of virtual operating systems will be deployed, in order to accommodate the

various needs of the architecture. The virtual OS’s will be Linux based (Debian), as well as Microsoft

Windows if required (in order to use the Kinect SDK)

http://opencv.org/downloads.html
http://www.vicomtech.org/viulib
http://gstreamer.freedesktop.org/
http://videomanlib.sourceforge.net/
http://www.grinninglizard.com/tinyxml2/
http://qt-project.org/
http://gstreamer.freedesktop.org/
https://developer.gnome.org/glib/2.42/
https://developer.gnome.org/gio/stable/
https://developer.gnome.org/json-glib/stable/
http://www.feep.net/libtar/
http://www.cs.waikato.ac.nz/ml/weka/
file:///D:/OneDrive/Projects/P-React/Documents/D2.3/www.debian.org

Page 48
Confidentiality: EC Distribution

July 2015

5. Deployment View

The deployment view focuses on aspects of the system that are important after the system has been tested

and is ready to go into live operation. This view defines the physical environment in which the system is

intended to run, including:

 Required hardware environment (e.g., processing nodes, network interconnections, etc.)

 Technical environment requirements for each node

 Mapping of software elements to the runtime environment

 Third-party software requirements

 Network requirements

5.1. Hardware Requirements

In order for the P-REACT system to be installed locally (in the premises of gas stations, small shops, public

transportation infrastructure etc.) an Embedded System along with a camera and/or a microphone is

required. The Embedded System that is been used currently (in the development phase) is a low cost

system that consists of an A10 Cortex-A8 CPU running at 1GHz and a Mali-400 GPU. It is equipped with

512MB of RAM and 4GB of NAND Flash storage. It hosts two usb2.0 ports for camera and microphone

connectivity and a 100Mbit Ethernet port for communication purposes. This unit provides a balance

between cost and performance and is compliant with the P-REACT concept of using a low cost Embedded

System for on-site analysis.

Besides the aforementioned basic version of the Embedded System, another version will be used, in order

to facilitate a depth sensor, providing more advanced event detection and analysis. This system has to be

much more powerful than the basic version, since processing depth information requires more processing

power. Despite this, the usage of the new Microsoft Kinect sensor (version 2) imposes even more

restrictions; the minimum hardware requirements for the Kinect v2 sensor are 64bit dual core CPU running

at 3.1GHz, 4GB of RAM, a USB3.0 port and a DirectX 11 capable GPU. A system with these specifications

cannot be considered as a “low-cost” system at the present time, but in the future it will be much more

affordable, and the P-REACT system can be much more effective with the utilization of depth sensors.

Finally, while the developments proceed, other depth sensors will be examined, in order to provide more

flexible solutions.

On the sensors’ side of hardware requirements, the cameras that are going to be used need to provide at

least VGA resolution (640x480 pixels) at 30fps and is desired (but not required) to have a night mode (infra-

red) in order to be able to function properly during night. For the microphone 16-bit audio at a sampling

rate of 16 kHz is adequate.

On the cloud side, an OpenStack computing node will be used that will host a number of virtual hosts for

the various cloud components (Figure 36). The following table displays the current list of virtual hosts that

are being used with respect to the system architecture that was presented in Section 2.

Page 49
Confidentiality: EC Distribution

July 2015

Table 1 Hardware requirements for the Virtual OS's

Virtual Host OS Architecture VCPUs RAM (GB) Storage Capacity

Orchestrator Ubuntu x86_64 1 2 20GB

Business Logic Ubuntu x86_64 2 4 20GB

Video Analytics Ubuntu x86_64 4 8 20GB

Audio Analytics Ubuntu x86_64 1 2 20GB

VCMS Ubuntu x86_64 2 4 20GB

Cloud-Embedded interfaces Ubuntu x86_64 2 2 20GB

Figure 36 Virtual Hosts on P-REACT's cloud

5.2. Existing Software and Hardware Requirements

The P-REACT system is designed as a stand-alone system, so no major existing hardware requirements

exist. However, it can be used with existing sensors. This means that if a small shop or a gas station

already has a surveillance system with one or more cameras, the P-REACT system can use these

cameras, and not require the purchase of a new one, thus reducing the cost for the shop owner. The same

applies for the microphones. Also, the Embedded System could be replaced by an existing system on site,

but this can be non-trivial due to operating system requirements, the Embedded System uses Debian

Linux, or the advanced system with the Kinect requires Microsoft Windows 8.1, an existing computer might

not have these.

Page 50
Confidentiality: EC Distribution

July 2015

5.3. Network Requirements

A network connection is required between the Embedded System and the cloud for both sending sensor

data (clips) from the Embedded System to the cloud, but also for the cloud to be able to monitor and control

the Embedded System. The network requirements for the cloud side (for monitoring and controlling

purposes) are minimal, since mostly control signals need to pass through. On the other hand, the

Embedded System will need to send data from the sensors that include images, videos, depth information

and audio clips along with metadata. A typical clip object can be about 10MB or more in size, and needs to

be transmitted relatively fast in order for the processing on the cloud side to complete as soon as possible

leading to the prevention or investigation of the detected incident. A typical ADSL line with 1Mbit upload will

require 8 seconds to upload 1Mbyte of data, which results in about 80seconds for a typical clip. This should

be the minimum requirement for the system to perform adequately.

6. System Concept and Structures

6.1. Introduction

This Section presents the broad functional areas of both the embedded and cloud system of the P-REACT

platform through context diagrams. Moreover, the high-level picture of each system’s boundaries and its

adjacent external entities is described. The context diagram is necessary to introduce the readers to the

context in which the architectural elements that compose the P-REACT platform will take place. It should

be noticed that the context diagrams can be considered as a “living” section of the architecture in order to

keep it up-to-date with high-level changes.

In the previous Sections the conceptual architecture of the embedded and cloud system was analysed from

different viewpoints (functional, development, deployment). In the following sections, both the static and the

dynamic behaviour of the systems are presented. The static behaviour is depicted through the use of

context diagrams, whereas the dynamic behaviour is illustrated through use case diagrams that are

identified and analysed.

6.1.1. System Context Diagram Definition and Scope

Context diagrams outline and illustrate how the system operates at high level and give an overall picture of

the system boundaries and its adjacent external entities. Thus, by providing them, the key stakeholders

may obtain a clear picture of the context in which the system analysis will take place.

Summarizing, the context diagram purpose and aim will be to introduce and provide the necessary

information for the logical decomposition (static analysis) of the architectural elements that comprise the P-

REACT system.

Page 51
Confidentiality: EC Distribution

July 2015

6.1.2. Architectural Elements Perspectives

By looking at the system architecture from various viewpoints, provides meaningful information to the

architecture derivation process and helps define the various architectural structures. However, to broaden

the modularity, reliability and credibility of the system, it is useful to outline and consider specific quality

properties, outlined in table 2 below, during the final stages of the architecture definition process. Towards

defining the static and dynamic structures of the P-REACT framework and its main architectural elements,

the architectural perspective is also considered. In this section, several quality properties are addressed for

all architectural elements of the system, as these are outlined in the following table:

Perspective Desired Quality

General Purpose

Performance and Scalability The ability of the system as a whole including its architectural

elements to predictably execute within its mandated

performance that cope with system requirements and is able to

handle increased processing volumes of information.

Availability and Resilience The ability of the system as a whole to be fully or partly

operational as and when required and to effectively handle

failures on all levels (hardware, software) that could potential

affect system availability and credibility.

Security The capacity of the system to reliably and effectively control,

monitor and additional audit if the policies defined are met (e.g.

what actions on what assets/resources) and to be able to

recover from failures in security-related attacks.

Evolution The capability of the system and its architectural elements to be

flexible enough in the case of non-foreseen changes during

deployment or installation process.

Internationalization The capacity of the system to be independent from any

particular language, country or cultural group.

Additional Perspectives to cope with P-REACT non-functional requirements

Maintenance The ability of the system to comply with coding guidelines and

standards. Includes also the functionality that needs to be

provided to support maintenance and administration of the

system during its operational phase.

Privacy & Regulation The ability of the system and its architectural elements to

Page 52
Confidentiality: EC Distribution

July 2015

conform to national and international laws, policies and other

rules and standards.

Usability The ease with which key stakeholders of a system are capable

to work effectively and to interact with it in a user-friendly way.

Table 2: Quality properties and perspectives that designers shall consider during the Architecture Definition

Process.

For each of the aforementioned perspectives, the importance on the embedded and cloud system of the P-

REACT framework may vary and the benefits of addressing them in both are essential towards providing a

common sense of concerns that shall guide the architectural elements definition process and their later

implementation and deployment to the validation and integration phase. In this respect, it is anticipated that

by addressing in the architecture definition process the importance of the aforementioned perspectives will

further help the later decision making (implementation, deployment and operational phases). For both the

embedded and cloud system, a table will be provided, in order to ensure that all concerns and non-

functional requirements are addressed and to exhibit what quality properties are considered within the

system.

6.1.3. Use Cases Definitions and main sequence diagrams

Within P-REACT, towards fulfilling the objective of presenting the dynamic behaviour of the system, a

general-purpose standard modelling language has been used, namely the Unified Modelling Language

(UML). As defined in the standard, the UML is a “graphical language for visualizing, specifying,

documenting the artefacts and architectural elements of a software-intensive system”. The UML provides a

number of standard schematic, sketching and diagramming notations and encapsulates best practices in

software design process into a standard and easily extensible notation. In this respect, architect designers

can use notations such as use cases, class diagrams, sequence diagrams and activity diagrams.

Moreover, it has several mechanisms, such as stereotyping, thus allowing architecture designers and

modellers to tailor or elaborate the language to suit their needs and circumstances.

Towards analysing the dynamic behaviour of the P-REACT framework and drafting the detailed

specifications of each architectural element, the basic use cases and application scenarios are elaborated

in the following paragraphs with the corresponding diagrams (e.g. UML sequence diagrams) taking into

account the overall user and system requirements.

The purpose of this analysis will be to illustrate the main functionalities that will be provided by the P-

REACT system components and sub-systems. The exact and detailed module specifications for each

architectural element were presented in Section 3.

General characterization and definition of use cases

A use case (UC) typically illustrates a discrete unit of interaction between a user (human or machine) and

Page 53
Confidentiality: EC Distribution

July 2015

the system. In the context of system design and engineering, UC is a description of a system’s behaviour

as it responds to a requirement or request originating from outside of the system, i.e. a use case capitalizes

on “who” can do “what” with the system in question.

It describes the functional requirements of the system, the external objects at the system boundary and the

response of the system. For instance, a use case for the Embedded System could be to detect an

abnormal event and send the respective clip object to the cloud system. It should be noticed that each

system’s functionality, must always be completed for the use case to terminate or finalize. Moreover, a use

case may 'include' another use case's functionality or 'extend' another use case with its own behaviour

(multi-level approach).

Summarizing, a UC (or a set of connected use cases) has the following peculiarities:

 Illustrates and organizes in a high-level the functional requirements of a system.

 Specifies the ultimate goals of the system/actor (user or machine) interactions.

 Presents unique scenarios from triggered events to tangible objectives and goals.

 Illustrates the main flow of events.

Application/Business Scenarios Scope and relation to Use Cases and Actors

In most cases, the use case process is used to identify and capture system’s dynamic behavioural

requirements by providing in details scenario-driven narratives. The business scenarios, which are related

to the actual pilot sites foreseen in the project, are compatible to the use cases presented in the following

sections. Moreover, the business cases can be easily abstracted to accommodate different domains (e.g.

public places, restricted areas etc.) using the Use Cases identified.

In this report, focus is given on the key stakeholders (actors) that play significant role to the application

scenarios identified for the P-REACT system. Use Cases are typically related to 'actors'. An actor is a

human or machine entity that interacts with the system to perform meaningful work.

UML Use Case, Sequence and Activity diagrams Use Case Diagram

Use Case Diagram

A use case diagram in its simplified view is a graphical representation of a use case and can graphically

visualize the different types of users of a system and the various ways that they interact with the system.

Sequence Diagram

A Sequence Diagram is typically used to illustrate the following:

 Usage scenario, which is a description of a potential way a subsystem, is utilized in the actual

system in question. The logic of a usage scenario may be part of a use case (or it can extend

another) and can be illustrated as a system-level sequence diagram. The logic of a usage scenario

may also be a pass through the logic contained in several use cases.

Page 54
Confidentiality: EC Distribution

July 2015

 The logic of methods, in which sequence diagrams, are utilized to explore the logic of a complex

operation, function, or procedure.

 The logic of services, in which a provided service is effectively a high-level method, often one that

can be invoked by a wide variety of actors. This includes web-services as well as business

transactions and interchanged messages implemented by a variety of technologies such as SOAP,

TCP/IP XML messages, etc.

Within this document focus is given to the functional description and to providing UML sequence diagrams

that visualize the dynamic architectural elements’ interaction and behaviour.

Activity Diagram

An Activity Diagram is used to describe the business and operational step-by-step workflows of the

involved architectural elements in a system. The diagrams illustrate the overall flow of control and can be

considered as a special form of the state-chart diagram that is suitable for expressing the activity execution

flow. It is commonly used for objects like classes, packages and operations that a system may encapsulate.

Activity diagrams can be used in conjunction with the UC diagram techniques, towards illustrating the

model behind the system being designed.

6.2. Embedded System

6.2.1. Static Model Analysis

In this section we will provide a static analysis of the Embedded System, by minutely describing its logical

decomposition in its architectural elements along with their high-level interfaces and interactions. To

facilitate understanding we provide a basic system context diagram which depicts the most important

architectural components of the system in Figure 29.

Figure 37 Basic context diagram of the Embedded System

The list of the architectural elements that compose the high-level logical structure of the Embedded System

is presented below, while their analytic description can be found in Sections 2 and 3:

Page 55
Confidentiality: EC Distribution

July 2015

 The Sensor Manager (SM) component, which is the entry point of the raw sensor data

(video/audio) to the Embedded System.

 The Video Analytics component, which receives video data from the SM and applies various

computer vision algorithms in order to detect any anomalous events.

 The Audio Analytics component, which processes the audio data sent from the SM and decides

whether the captured stream corresponds to an anomalous event.

 The Embedded System Manager (ESM) component, which combines the results of the analytics

modules and decides whether an activation signal should be triggered on the Clip Generation

component.

 The Clip Generator component, which generates a Clip Object when an activation signal is sent

from the ESM.

Besides the aforementioned structural elements of the Embedded System there is also the

Communication component that operates as the interface between the embedded and the cloud system.

The Communication component consists of several sub-systems that ensure smooth data exchange

between the embedded and the cloud system. These sub-systems are:

 The Encryption Manager, which is responsible for adding extra layers of protection by encrypting

the Clips before they are uploaded to the Cloud.

 The Secure Communication Channel Manager, which, as the name implies, secures the

communication between the Embedded Systems and the Cloud. To achieve this it exploits

OpenVPN framework.

 The Clip Handler, subsystem with the task of transferring the Clips, generated from the Embedded

Systems, to the Cloud.

6.2.2. Dynamic Model Analysis

In this section, the main use cases of the Embedded System are described focusing on the dynamic

behaviour of the system.

The basic use case of the Embedded System is illustrated in Figure 38, where the interaction between the

components is shown. Multimedia streams are initially aggregated on the Sensor Manager which stores

them on an internal buffer. Audio and video streams are propagated to the Audio and Video Analytics

components respectively through a UDP socket. The analytics components send a JSON object to the

Embedded System Manager through a TCP socket. The object contains the identity of the sensor, the

anomaly score and a timestamp. Based on the scores received the Embedded System Manager decides

whether a Clip Generation Event should be triggered. If the trigger is activated the Clip Generator

component requests the available multimedia data from the Sensor Manager. Once the multimedia data

are received, they are packaged with the metadata received from the analytics modules in a JSON object

Page 56
Confidentiality: EC Distribution

July 2015

and then forwarded to the Communication Manager. The Communication Manager sends the Clip Object to

the cloud system.

Figure 38 Basic use case of the Embedded System

Figure 39 Use case of the embedded system where the sensors' parameters are configured

Page 57
Confidentiality: EC Distribution

July 2015

Another use case of the Embedded System is depicted in Figure 39 where the parameters of the sensors

are configured (e.g. video resolution, zoom, audio volume etc.). Here the Embedded System Manager

communicates with the Sensor Manager sending the necessary configuration parameters. This

configuration occurs, when the system is initialised or when a request is received from the cloud system

.

Figure 40 Use case where multimedia files are received from a mobile device and a clip is generated

The use case of Figure 40depicts the interaction of the involved components when multimedia data are

sent from a mobile device to the Clip Generator. A JSON clip object is generated and is sent to the

Communication Manager.

6.3. Cloud System

6.3.1. Static Model Analysis

The aim of this section is to provide a logical decomposition of the structural elements that comprise the

Cloud System through a static model analysis. In the following paragraphs we will present in detail each

individual component along with its interfaces and interactions. A system context diagram is shown in

Figure 41.

Figure 41 Basic context diagram of the cloud system

Page 58
Confidentiality: EC Distribution

July 2015

As illustrated in the figure above, the architectural components that compose the high-level logical structure

of the cloud system are the following:

 The Orchestration component, which is the central component of the Cloud System and interacts

with most of the other components.

 The Business Logic component, which will determine the analysis type for a new Clip Object.

 The Video Analytics component, which applies several computer vision algorithms on a specific

Clip Object.

 The Audio Analytics component, which analyses the audio data from a clip object. The Video

Content Management System (VCMS) component, which is responsible for storing audio and

video metadata on the cloud as well as maintaining a URI linking to the actual video content of a

Clip Object.

6.3.2. Dynamic Model Analysis

In this section we present the dynamic behaviour of the cloud system through a series of use cases. It

should be noted that there is the possibility that the described use cases will be modified as the project

evolves. Nonetheless, the basic use case of the cloud system is depicted in the diagram of Figure 42.

Here, a JSON Clip Object is received by the Orchestration component, sent by the Communication

Manager of an Embedded System. Simultaneously, the multimedia data are stored on the cloud and a

unique URI is generated. Moreover, a request to add the clip is sent to the Video Content Management

System. The Business Logic is also informed in order to decide the type of analysis that will be applied on

the clip. The analysis type is sent back to the Orchestration which communicates with the analytics

components that are responsible for the further processing of the clip.

The analytics components retrieve from the Cloud Storage the respective multimedia data using the clip

URI. After audio/video processing concludes, the results are forwarded to Orchestration which updates the

clip object on the Video Content Management System and informs the Business Logic that the processing

of the clip has concluded. Business Logic will then decide whether an authorized user of the system should

be notified.

Another use case of the cloud system is illustrated in Figure 43. The Business Logic component is able to

send to the Orchestration component a request to change the parameters of the sensors on an Embedded

System. This request is propagated to the Communication Manager of the Embedded System which

informs the Embedded System Manager following the use case of Figure 39. It should be added that

instead of the Business Logic component, the user of the cloud system will also be able to request the

reconfiguration of the sensors in a similar use case.

Page 59
Confidentiality: EC Distribution

July 2015

Figure 42 Basic use case of the cloud system

Figure 43 Use case where the sensors of an Embedded System are reconfigured

7. System Architectural Elements Specifications

7.1. Introduction

This Section highlights the scope of the P-REACT system and presents the broad functional areas to be

provided by the P-REACT’s Cloud and Embedded platforms, the high-level picture of each system

boundaries and its adjacent external entities (in terms of the use of context diagrams).

The previous Section illustrated the static and dynamic behaviour of the P-REACT system along with the

Page 60
Confidentiality: EC Distribution

July 2015

high-level context diagrams of the P-REACT architecture. The static analysis illustrated the main

architectural elements, whereas the dynamic analysis has been performed through the UML Sequence

Diagrams, taking into account the latest revisions of the P-REACT Use Cases for both the Embedded and

the Cloud system.

In this Section, the core architectural elements that have been illustrated with system context diagrams in

Section 3 are further analysed and a more detailed specification of them is provided. The specifications are

given for each framework separately, whereas the common functional elements are described in separate

section in this Section.

7.2. Embedded System

7.2.1. Sensors

The P-REACT system utilizes standard of-the-shelf cameras and microphones, so no specialized protocols

and/or ports are required. In most cases the sensors will be directly connected with the Embedded System

through a USB port, whereas IP cameras will also be supported, with the latter being connected through

Ethernet or Wi-Fi with the Embedded System. The following tables present the detailed characteristics of

the sensors that will be used. At this point it has to be noted that since the P-REACT system can support a

number of different cameras and microphones, the minimum requirements are presented and not a specific

model.

Sensor/Device: Video Sensing

Sensor Description and Functionality

1. Name The P-REACT system supports most of-the-shelf cameras

2. Short Description
The sensor will be utilized to detect abnormal events in both indoor and
outdoor environments of small shops, gas station or public transportation
infrastructure

3. Measurement

The sensor must be capable to acquire colour images and should have a
night mode. The Sensor will be able to acquire data that will be fed to the
P-REACT’s Video analytics algorithms for further analysis.

The sensor is attached to a PC using the USB-interface. IP cameras are
also supported.

4. Functionality

The sensor will be part of the P-REACT system in order to detect abnormal
events (e.g. theft, fighting, anti-social behaviour) on both outdoor and
indoor environments of small shops, gas stations and public transportation
infrastructure. Moreover, in case an abnormal event is detected, data will
be sent to the cloud system in order to identify the suspect(s).

Sensor Characteristics (Physical)

5. Dimensions Varies

6. Weight varies

7. Material N/A

8. Mounting It should be made manually

Sensor Characteristics (Operational)

Page 61
Confidentiality: EC Distribution

July 2015

Sensor/Device: Video Sensing

Sensor Description and Functionality

9. Measurement
Range

-

10. Measureme
nt Resolution

The sensor should provide minimum VGA resolution images (640x480
pixels) at 30 frames per second

11. Accuracy N/A

12. Zero Error -

13. Humidity Operating temperature range applies (e.g. 5 to 35 degrees Celsius).

14. Pressure -

15. Lifetime - (N/A)

Sensor Requirements (Hardware)

16. Power
Requirements

Varies. Usually powered over the USB connection

17. Data
Connections

USB 2.0

18. Data
Format

The RGB video stream should be 24-bit VGA resolution (640 × 480 pixels)

19. Data Epoch
Rate

The data rate is at minimum 30 Hz but it highly depends on the actual
application use for real-time performance.

20. Data
Availability

The data stream is continuous and can be acquired also as required (or on
demand). The API and the SDK of the camera is flexible enough to acquire
the images as soon as they are required on the aforementioned maximum
data epoch rate.

21. Transmissi
on Frequency

30 Hz

22. Transmissi
on Power

N/A

Sensor Requirements (Software)

23. Specific Software
Required?

No

24. Software Details N/A

Sensor Requirements (Ethical / Privacy Issues)

25. Specific
Software
Required?

The sensor acquires data that could be used to identify a person. However,
within P-REACT special countermeasures will be taken into account in
order to address all ethical, legal and privacy issues.

26. Software
Details

N/A

Miscellaneous

27. References -

28. Comments
This will be the main proposed system for the P-REACT solution. It offers
good performance at a low cost, and in many cases will be able to utilize
already existing equipment.

Sensor/Device: Depth Imaging

Page 62
Confidentiality: EC Distribution

July 2015

Sensor/Device: Depth Imaging

Sensor Description and Functionality

1. Name

Kinect Sensor v2 (Microsoft)

2. Short Description
The sensor will be utilized to detect abnormal events in indoor
environments of small shops or gas stations. It can also be utilized on the
interior of public transportation (buses, trains etc.)

3. Measurement

The sensor is capable to acquire colour, Infrared and depth images. Within
P-REACT, only the depth images will be used in each case. The depth
sensor will be able to acquire depth data that will be fed to the P-REACT’s
Video analytics algorithms for further analysis (Event detection, person
identification).

The sensor is attached to a PC using the USB-interface (USB 3.0)

4. Functionality

The sensor will be part of the P-REACT system in order to detect abnormal
events (e.g. theft, fighting, shop lifting) on indoor environments of small
shops, gas stations and public transportation. Moreover, in case an
abnormal event is detected, data will be sent to the cloud system in order
to identify the suspect(s).

Sensor Characteristics (Physical)

5. Dimensions
The Kinect Sensor head size is 292.1 x 304.8 x 184.15 (in mm)

<L x W x H in mm>

6. Weight ~1. kg

7. Material N/A

8. Mounting It should be made manually

Sensor Characteristics (Operational)

9. Measurement
Range

The operating sensor range for depth images is from 0.4m to 8m (extended
range with lower accuracy).

10. Measureme
nt Resolution

The measurement resolution is given for both colour and depth sensing
lenses:

Colour VGA motion camera 1920 x 1080 pixel resolution @30 FPS

Depth Camera 512 x 424 pixel resolution @30 FPS

Infrared Camera 512 x 424 pixel resolution @30 FPS

The corresponding field of view is the following:

Horizontal field of view- 70 degrees

Vertical field of view- 60 degrees

11. Accuracy
At the maximum range the random error of depth measurements increases
quadratically. It can reach even 4cm at the maximum range (8 meters [34])

12. Zero Error The Kinect Sensor is pre-calibrated with its lens.

13. Humidity Operating temperature range applies (e.g. 5 to 35 degrees Celsius).

14. Pressure -

Page 63
Confidentiality: EC Distribution

July 2015

Sensor/Device: Depth Imaging

15. Lifetime - (N/A)

Sensor Requirements (Hardware)

16. Power
Requirements

The power is supplied from the mains by way of an AC adapter.12 Watts
power demand through a standard USB port interface.

17. Data
Connections

USB 3.0

18. Data
Format

The output of the sensor is raw data for colour and depth images (RGB
and depth images with pixel values representing depth in mms).

The RGB video stream uses 32-bit FullHD resolution (1920 × 1080 pixels)
with a Bayer colour filter, while the monochrome depth sensing video
stream is in resolution of 512 × 242 pixels) with 16-bit depth.

19. Data Epoch
Rate

The data rate is about 30 Hz but it highly depends on the actual application
use for real-time performance.

20. Data
Availability

The data stream is continuous and can be acquired also as required (or on
demand). The API and the SDK of the camera is flexible enough to acquire
the images as soon as they are required on the aforementioned maximum
data epoch rate.

21. Transmissi
on Frequency

30 Hz

22. Transmissi
on Power

N/A

Sensor Requirements (Software)

23. Specific Software
Required?

The sensor is accompanied with a corresponding SDK. The latest version
is Windows Kinect SDK 2.

24. Software Details
Kinect SDK is available for free and use for research purposes.

 Kinect SDK is available on [34]

Sensor Requirements (Ethical / Privacy Issues)

25. Specific
Software
Required?

The sensor acquires data that could be used to identify a person. However,
within P-REACT only the depth images will be used for analysis and
special countermeasures will be taken into account in order to address all
ethical, legal and privacy issues.

26. Software
Details

The same API described in 24.

Miscellaneous

27. References

More information for the Kinect Sensor can be found in the official site from
Microsoft:

http://www.microsoft.com/en-us/kinectforwindows/

28. Comments
The Kinect Sensor will be part of the P-REACT system, as a more
advanced proposal for volume crime detection in indoor environments.

Sensor/Device: Audio Sensing

Sensor Description and Functionality

1. Name The P-REACT system supports most of-the-shelf microphones

2. Short Description
The sensor will be utilized to detect abnormal events in both indoor and
outdoor environments of small shops, gas station or public transportation

Page 64
Confidentiality: EC Distribution

July 2015

Sensor/Device: Audio Sensing

Sensor Description and Functionality

infrastructure

3. Measurement

The sensor must be capable to acquire audio at 16-bit audio at a sampling
rate of 16 kHz

The sensor is attached to a PC using the USB-interface.

4. Functionality

The sensor will be part of the P-REACT system in order to detect abnormal
events (e.g. screaming, breaking glass) on both outdoor and indoor
environments of small shops, gas stations and public transportation
infrastructure. Moreover, in case an abnormal event is detected, data will
be sent to the cloud system in order to identify the suspect(s).

Sensor Characteristics (Physical)

5. Dimensions Varies

6. Weight varies

7. Material N/A

8. Mounting It should be made manually

Sensor Characteristics (Operational)

9. Measurement
Range

-

10. Measureme
nt Resolution

-

11. Accuracy N/A

12. Zero Error -

13. Humidity Operating temperature range applies (e.g. 5 to 35 degrees Celsius).

14. Pressure -

15. Lifetime - (N/A)

Sensor Requirements (Hardware)

16. Power
Requirements

Varies. Usually powered over the USB connection

17. Data
Connections

USB 2.0

18. Data
Format

WAVE format

19. Data Epoch
Rate

20. Data
Availability

-

21. Transmissi
on Frequency

-

22. Transmissi
on Power

N/A

Sensor Requirements (Software)

23. Specific Software
Required?

No

24. Software Details N/A

Page 65
Confidentiality: EC Distribution

July 2015

Sensor/Device: Audio Sensing

Sensor Description and Functionality

Sensor Requirements (Ethical / Privacy Issues)

25. Specific
Software
Required?

The sensor acquires data that could reveal a person’s identity. However,
within P-REACT special countermeasures will be taken into account in
order to address all ethical, legal and privacy issues.

26. Software
Details

N/A

Miscellaneous

27. References -

28. Comments
This will be part of the main proposed system for the P-REACT solution. It
offers good performance at a low cost, and in many cases will be able to
utilize already existing equipment.

29. Transmissi
on Power

N/A

7.2.2. Architectural Elements

7.2.2.1. Sensor Management Interfaces

Name: Sensor Management

Type: Interface

Container The sensor manager is the connectivity layer between the sensors and the
Embedded System

Functionality: Sensor Management is responsible for capturing data from the sensors and
feed it to the rest of the Embedded System’s modules.

Connections: Sensor Devices

Video- Audio analytics

Clip Generator

INPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardinality
Value
Range

Source/

Involved
Entities

Video Raw data

Streaming
Data from the
Camera

Streaming
Images (byte
arrays)

1..* Frames Per
Second

FPS shall be

at least 15

Camera

Page 66
Confidentiality: EC Distribution

July 2015

Depth Raw
Sensor Data

Streaming
Data from the

Depth Sensor

Streaming
Images (byte

arrays)

1..* Frames Per
Second

FPS shall be
at least15

Depth Sensor
(Kinect)

Audio Raw

Data

Streaming

Data from the
microphone

Streaming

Audio signal
(byte arrays)

1…* Sequential

Audio
Frames of

100ms
length

Microphone

OUTPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardinality Value
Range

Destination

All of the
aforementione

d inputs

See above for
each input

row

See above for
each input

row

See above
for each

input row

See above
for each

input row

Video/Audio
analytics

Clip generator

Hardware
requirements

Hardware requirements vary depending on the sensors used. Detailed
hardware requirements have been presented in Section 5.1

Software
requirements

and
specification
/

development
language

The Sensors Management supports the integration of sensors using all the
operating systems and hardware combinations where it runs. It has been

developed in C/C++ programming language

Power
requirements

Typical power for each system.

Other

resources
required /

environment

The restrictions are highly correlated to the sensors utilized into each

instantiation.

Communicati
ons

Using JSON objects

Issues The Sensor Management shall be able to cope with all sensors described in
Section 5.1.

Pseudo code Sensor Management

Identify all sensors connected to the Embedded System

Page 67
Confidentiality: EC Distribution

July 2015

Do Until interrupted

For Each Sensor

Update data buffer

If requested pass sensor buffer to Video/Audio
analytics

End

If requested pass all sensor buffers to clip generator

Loop

End

7.2.2.2. Clip Generator

Name: Clip Generator

Type: Module

Container The clip generator receives data from the sensors managers, packs it to a
clip object along with the necessary metadata (stemming from the

Embedded System and/or the video/audio analytics modules) and sends it to
the cloud.

Functionality
:

Clip Generator is responsible for creating a clip object, send it to the cloud
and ensure that it has been delivered.

Connections: Sensor Devices

Communication Module

INPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type
Cardin
ality

Value
Range

Source/ Involved
Entities

Sensor buffer
data

Buffered

Data from
the sensors

-

1..* - Sensor Manager

OUTPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardin
ality

Value
Range

Destination

All of the
aforementione

d inputs

See above
for each

input row

See above for
each input row

See
above

for each
input

See above
for each

input row

Video/Audio analytics

Clip generator

Page 68
Confidentiality: EC Distribution

July 2015

row

Hardware

requirements

Hardware requirements vary depending on the sensors used. Detailed

hardware requirements have been presented in Section 5.1

Software
requirements

and
specification

/
development
language

It has been developed in C/C++ programming language

Power
requirements

Typical power for each system.

Other
resources

required /
environment

N/A

Communicati

ons

Using JSON objects

Issues -

Pseudo code Clip Generator

If an event has been detected

Request sensor data from Sensor Manager

Create Clip Object

Send Clip to Cloud

Wait for receive confirmation

End

7.2.2.3. Embedded system Manager

Name: Embedded System Manager

Type: Module

Container The Embedded System manager module is responsible for monitoring the
Embedded System and also to receive the output of the video and audio analytics

and notify the clip generator if an event has been detected.

Functionality The Embedded System manager monitors the Embedded System and performs

Page 69
Confidentiality: EC Distribution

July 2015

: control, maintenance and/or update actions that are received from the cloud.

It is also responsible for receiving input from the video and audio analytics

modules and decides whether an event has occurred. In case an event has
occurred, it is responsible for instructing the clip generator to create a clip.

Connections: Video/Audio analytics

Clip generator

Communication Module

INPUT PARAMETERS

Attribute /

Parameter

Short

Description
Data Type

Cardin

ality

Value

Range

Source/ Involved

Entities

Video/Audio
analytics output

The output
of the

video/audio
analytics.

This can be
a binary or a
decimal

value
indicating

whether an
event has

occurred.

Binary/Decimal

1..* 0-1 Video/Audio analytics

Maintenance/Co
ntrol/Update

Signals
coming from

the cloud
(through the

communicati
ons module)
that

JSON objects 1…* N/A Cloud (through
Communications

module)

OUTPUT PARAMETERS

Attribute /

Parameter

Short

Description

Data Type Cardin

ality

Value

Range

Destination

All of the
aforementione

d inputs

See above
for each

input row

See above for
each input row

See
above

for each
input

row

See above
for each

input row

Video/Audio analytics

Clip generator

Embedded System’s
OS

Hardware
requirements

Hardware requirements vary depending on the sensors used. Detailed
hardware requirements have been presented in Section 5.1

Page 70
Confidentiality: EC Distribution

July 2015

Software
requirements

and
specification
/

development
language

It has been developed in C/C++ programming language

Power
requirements

Typical power for each system.

Other

resources
required /

environment

N/A

Communicati

ons

Using JSON objects

Issues -

7.2.2.4. Audio Analytics

Name: Audio Analytics Module

Type: Module

Container The audio analytics module on the Embedded System performs lightweight
audio analysis in order to detect abnormal events

Functionality: The audio analytics module of the Embedded System receives data from the
Sensor Manager and performs lightweight analysis on them. Its purpose is to
determine whether an abnormal event has occurred, and provide its output to the

Embedded System manager. The output of the module is either a binary value

(with 0 meaning no event and 1 indicating an event), or a decimal value,
indicating a confidence out the existence of an event

Connections: Embedded System Manager

Sensor Manager

INPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type
Cardin
ality

Value
Range

Source/ Involved
Entities

Audio Raw

Data

Streaming

Data from
the

Streaming

Audio signal
(byte arrays)

1…* Sequential

Audio
Frames of

Microphone

Page 71
Confidentiality: EC Distribution

July 2015

microphone 100ms
length

OUTPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardin
ality

Value
Range

Destination

All of the
aforemention

ed inputs

See above
for each

input row

See above for
each input row

See
above

for each
input
row

See above
for each

input row

Embedded System
Manager

Hardware
requirement

s

Hardware requirements vary depending on the sensors used. Detailed
hardware requirements have been presented in Section 5.1

Software

requirement
s and
specification

/
developmen

t language

It has been developed in C/C++ programming language

Power
requirement

s

Typical power for each system.

Other

resources
required /
environment

N/A

Communicat
ions

Using JSON objects

Issues -

7.2.2.5. Video Analytics

Name: Video Analytics Module

Type: Module

Container The video analytics module on the Embedded System performs lightweight

video analysis in order to detect abnormal events

Page 72
Confidentiality: EC Distribution

July 2015

Functionalit
y:

The video analytics module of the Embedded System receives data from the
Sensor Manager and performs lightweight analysis on them. Its purpose is

to determine whether an abnormal event has occurred, and provide its
output to the Embedded System manager. The output of the module is either

a binary value (with 0 meaning no event and 1 indicating an event), or a
decimal value, indicating a confidence out the existence of an event.

Depending on the available sensors, the Video analytics module will perform
analysis on either colour data or depth data.

Connections

:

Embedded System Manager

Sensor Manager

INPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type
Cardin
ality

Value
Range

Source/ Involved
Entities

Video Raw data

Streaming

Data from
the Camera

Streaming

Images (byte
arrays)

1..* Frames

Per
Second

FPS shall
be at least
15

Camera

Depth Raw
Sensor Data

Streaming
Data from

the Depth
Sensor

Streaming
Images (byte

arrays)

1..* Frames
Per

Second

FPS shall

be at least
15

Depth Sensor (Kinect)

OUTPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardin
ality

Value
Range

Destination

All of the
aforemention
ed inputs

See above
for each
input row

See above for
each input row

See
above
for each

input
row

See above
for each
input row

Embedded System
Manager

Hardware
requirement
s

Hardware requirements vary depending on the sensors used. Detailed
hardware requirements have been presented in Section 5.1

Software
requirement

It has been developed in C/C++ programming language

Page 73
Confidentiality: EC Distribution

July 2015

s and
specification

/
developmen
t language

Power
requirement

s

Typical power for each system.

Other
resources

required /
environment

N/A

Communicat
ions

Using JSON objects

Issues -

7.2.2.6. Communications Module

Name: Communications Module

Type: Module

Container The communications module relays messages from the cloud to the

Embedded System and sends clip objects to the cloud.

Functionality
:

The communications modules is responsible for receiving messages from the
cloud system and relay them to the Embedded System Manager module as

well as forwarding Clip objects, that the Clip generator has created, to the
cloud. For the latter, it also receives confirmation of clip received from the

cloud and passes it to the clip generator.

Connections: Embedded System Manager

Clip Generator

Cloud

INPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type
Cardin
ality

Value
Range

Source/ Involved
Entities

Clip Object Clip Object

from the clip
generator

JSON 1…* N/A Clip Generator

Page 74
Confidentiality: EC Distribution

July 2015

Signals from
the cloud

Embedded
System

Control/Main
tenance/Upd
ate signals

coming from
the cloud.

JSON 1…* N/A Cloud

OUTPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardin
ality

Value
Range

Destination

All of the
aforementione

d inputs

See above
for each

input row

See above for
each input row

See
above

for each
input

row

See above
for each

input row

Cloud

Clip Generator

Hardware
requirement

s

Hardware requirements vary depending on the sensors used. Detailed
hardware requirements have been presented in Section 5.1

Software

requirement
s and
specification

/
development

language

It has been developed in C/C++ programming language

Power
requirement

s

Typical power for each system.

Other

resources
required /
environment

N/A

Communicati
ons

Using JSON objects

Issues -

7.3. Cloud Architectural Elements

Page 75
Confidentiality: EC Distribution

July 2015

7.3.1.1. Communications Module

7.3.1.2. Business Logic

Name: Business Logic

Type: Component

Container
The Business Logic Component (aka 'Brain') is the component which

manages the cameras, VCMS and interfaces with the human operators via
the GUI. Three parts are:

 Alert Raising

 Interaction & Control
 Real Time Monitoring

Functionalit
y:

Alert Raising

This will decide which clips are important enough to raise an alert. This

decision is taken with input from cloud-side video analytics and statistical

analysis.

Interaction and Control

This is feedback to the cameras. Feedback is via the "Encryption

Manager/secure communication" component. Feedback is in xml/soap.

Feedback can:

 switch on/off cameras

 change sensitivity of particular cameras

 Tell camera to switch algorithms

 Update camera software

 Upload new algorithm binaries to camera

Real Time Monitoring

This is the point where clips are accessed, either live clips or stored clips,

and displayed to the GUI. GUI/User can validate clips.

Connections

:

Orchestration

INPUT PARAMETERS

Attribute /

Parameter

Short

Description
Data Type

Cardin

ality

Value

Range

Source/ Involved

Entities

New Event A notification

that an event
has been

JSON 1…* N/A Orchestration

Page 76
Confidentiality: EC Distribution

July 2015

detected

Control -

Monitor

Signals that

are sent to
the Embedded

System s in
order to

control them
(configure,
change

sensor
settings etc.)

or enable real
time
monitoring

JSON 1…* N/A Orchestration

OUTPUT PARAMETERS

Attribute /

Parameter

Short

Description

Data Type Cardin

ality

Value

Range

Destination

All of the
aforemention

ed inputs

See above for
each input

row

See above for
each input row

See
above

for each
input

row

See above
for each

input row

Cloud

Clip Generator

Hardware

requiremen
ts

Hardware requirements vary depending on the sensors used. Detailed

hardware requirements have been presented in Section 5.1

Software

requiremen
ts and

specificatio
n /
developmen

t language

It has been developed in C/C++ programming language

Power

requiremen
ts

Typical power for each system.

Other

resources
required /

environmen
t

N/A

Communica Using JSON objects

Page 77
Confidentiality: EC Distribution

July 2015

tions

Issues -

7.3.1.3. Video Analytics

Name: Video Analytics Module

Type: Module

Container The video analytics module on the cloud performs advanced video analysis
in order to verify the event detected on the Embedded System and identify

suspect(s)

Functionalit

y:

The video analytics module of the cloud receives a clip object and performs

advanced video analysis on them. Its purpose is to verify the presence of
an abnormal event, and detect/identify the suspects. The latter will be

achieved using biometric analysis (gait, face and activity identification)
while complying with ethical and privacy guidelines

Depending on the available sensors, the Video analytics module will perform

analysis on colour data and/or depth data.

Connections

:

Orchestration

INPUT PARAMETERS

Attribute /

Parameter

Short

Description
Data Type

Cardin

ality

Value

Range

Source/ Involved

Entities

Video Raw
data

Streaming

Data from the
Camera

Streaming

Images (byte
arrays)

1..* Frames

Per
Second

FPS shall

be at least
15

Camera

Depth Raw
Sensor Data

Streaming
Data from the
Depth Sensor

Streaming
Images (byte
arrays)

1..* Frames
Per
Second

FPS shall
be at

least15

Depth Sensor (Kinect)

OUTPUT PARAMETERS

Attribute / Short Data Type Cardin Value Destination

Page 78
Confidentiality: EC Distribution

July 2015

Parameter Description ality Range

All of the

aforemention
ed inputs

See above for

each input
row

See above for

each input row

See

above
for each
input

row

See above

for each
input row

Embedded System

Manager

Hardware

requiremen
ts

Hardware requirements vary depending on the sensors used. Detailed

hardware requirements have been presented in Section 5.1

Software

requiremen
ts and

specificatio
n /

developmen
t language

It has been developed in C/C++ programming language

Power

requiremen
ts

Typical power for each system.

Other
resources
required /

environmen
t

N/A

Communica
tions

Using JSON objects

Issues -

7.3.1.4. Audio Analytics

Name: Audio Analytics Module

Type: Module

Container The audio analytics module on the cloud performs audio analysis in order to
detect abnormal events

Functionalit
y:

The audio analytics module of the cloud receives a clip object and performs
analysis on them. Its purpose is to determine whether an abnormal event

has occurred, and provide its output to the Brain. The output of the module
is either a binary value (with 0 meaning no event and 1 indicating an

event), or a decimal value, indicating a confidence out the existence of an

Page 79
Confidentiality: EC Distribution

July 2015

event

Connection

s:

Orchestration

INPUT PARAMETERS

Attribute /

Parameter

Short

Description
Data Type

Cardin

ality

Value

Range

Source/ Involved

Entities

Audio Raw

Data

Streaming

Data from the
microphone

Streaming

Audio signal
(byte arrays)

1…* Sequential

Audio
Frames of
100ms

length

Microphone

OUTPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardin
ality

Value
Range

Destination

All of the
aforemention
ed inputs

See above for
each input
row

See above for
each input row

See
above
for each

input
row

See above
for each
input row

Embedded System
Manager

Hardware
requiremen
ts

Hardware requirements vary depending on the sensors used. Detailed
hardware requirements have been presented in Section 5.1

Software
requiremen

ts and
specificatio
n /

developme
nt language

It has been developed in C/C++ programming language

Power
requiremen
ts

Typical power for each system.

Other
resources

required /
environmen
t

N/A

Page 80
Confidentiality: EC Distribution

July 2015

Communica
tions

Using JSON objects

Issues -

7.3.1.5. VCMS

Name: Video Content Manager System

Type: Module

Container The VCMS is responsible for managing the clip objects that are stored in

the P-REACT system.

Functionali

ty:

The VCMS receives from the orchestration clip objects and stores them

accordingly. It also feeds clip objects to the orchestration when requested
in order to be further analysed. Besides this, it provides a GUI in order for

the operator to view or analyse clips on demand.

Connection
s:

Orchestration

INPUT PARAMETERS

Attribute /

Parameter

Short

Description
Data Type

Cardin

ality

Value

Range

Source/ Involved

Entities

Clip Objects Clip objects
that are stored

in the
database

JSON 1…* … Orchestration

OUTPUT PARAMETERS

Attribute /
Parameter

Short
Description

Data Type Cardin
ality

Value
Range

Destination

All of the
aforementio

ned inputs

See above for
each input row

See above for
each input row

See
above

for each
input
row

See above
for each

input row

Embedded System
Manager

Hardware
requiremen

ts

Hardware requirements vary depending on the sensors used. Detailed
hardware requirements have been presented in Section 5.1

Page 81
Confidentiality: EC Distribution

July 2015

Software
requiremen

ts and
specificatio
n /

developme
nt

language

It has been developed in C/C++ programming language

Power
requiremen

ts

Typical power for each system.

Other

resources
required /

environme
nt

N/A

Communica

tions

Using JSON objects

Issues -

7.3.1.6. Orchestration

Name: Orchestration

Type: Module

Container The Orchestration Module is the main module of the system.

Functionality: The orchestration receives clip objects from the communication manager

and feeds them to the Brain module. It forwards the Brain’s instructions
on the analytics algorithms that need to be used on a specific clip to the
analytics module, and instructs the VCMS to store the incoming clip

object. It also relays control and maintenance messages for the

Embedded System s to the communications module.

Connections: Brain

VCMS

Video/Audio Analytics

GUI

Communications Module

INPUT PARAMETERS

Page 82
Confidentiality: EC Distribution

July 2015

Attribute /
Parameter

Short
Descriptio

n

Data Type
Cardin
ality

Value
Range

Source/ Involved
Entities

New Clip
Object

Incoming
clip object

JSON 1…* … Communication
Module

Analyse Clip
object

Instructions
to analyse a

clip object

… 1…* … Brain

Video/Audio
Analytics

response

The result
of the

analysis on
a clip object

JSON 1…* … Analytics

OUTPUT PARAMETERS

Attribute /

Parameter

Short

Descriptio
n

Data Type Cardin

ality

Value

Range

Destination

All of the

aforementioned
inputs

See above

for each
input row

See above for

each input row

See

above
for each

input
row

See above

for each
input row

Embedded System

Manager

Hardware

requirements

Hardware requirements vary depending on the sensors used. Detailed

hardware requirements have been presented in Section 5.1

Software

requirements
and
specification

/
development

language

It has been developed in C/C++ programming language

Power
requirements

Typical power for each system.

Other
resources

required /
environment

N/A

Communicati

ons

Using JSON objects

Page 83
Confidentiality: EC Distribution

July 2015

Issues -

8. Conclusions

In the context of WP2 and collaboration with other P-REACT WPs (WP1, WP3-WP4), the most important

components of the P-REACT system have been presented and analysed, whereas the interaction among

key components of each framework has been analysed through the use of UML sequence diagrams.

Moreover, the static behaviour among key architectural elements has been presented using system context

diagrams and in addition the dynamic behaviour has been analysed by elaborating the use cases defined

in WP1 with additional information targeting mainly to outline the core functionalities of the P-REACT

system and critical requirements that shall be taken into account during the implementation and integration

phases of the project (WP3-WP4).

The architectural views and perspectives presented in this deliverable will further drive the design and

implementations during the project lifetime as:

 The system context diagrams have illustrated the core components of the P-REACT system, the key

stakeholders as well as the way they interact with the system. This part of the report outlined the static

analysis for both the Embedded System and the Cloud.

 The detailed analysis of the use cases through UML diagrams have driven the refinement of the

functional requirements of each architectural element and simultaneously have provided an overall

design perimeter and the principle interactions among key components of P-REACT system.

 The detailed description of the architectural elements have provided a comprehensive view of the P-

REACT components focusing mainly on its major architectural elements and providing high-level

critical class diagrams, which allow to reason about and describe the dynamic behaviour of the

system. The analysis presented for each architectural element, which encompasses data inputs and

outputs, interrelation among system entities and correlation with respective use cases and key system

requirements will enable during the implementation phase module developers and integrators to

communicate about architectural issues in a more efficient and effective way.

 Moreover, interoperability issues have been addressed in this deliverable, as both Embedded System

and the Cloud shall cope with several interoperability requirements stemming from the different needs

of its stakeholders.

Although no major modifications are expected to the overall P-REACT system architecture and its major

components, this deliverable can be considered as a living document that will address minor refinements

that might be necessary in case of new unforeseen limitations that will come up during the implementation

phase. It is worth mentioning that in the definition of the architectural elements process, all major module

developer responsible partners were involved. The involvement of the developers to the architecture

refinement process was significant because it resulted in a more coherent architecture definition (and its

Page 84
Confidentiality: EC Distribution

July 2015

architectural elements), which also encapsulated the view of developers.

Summarizing, this deliverable has provided a sound groundwork for the technical developments of the P-

REACT system that will take place in WPs 3 and 4, whereas the actual architectural elements of each

framework will be implemented and validated.

ANNEX I. Orchestration API Description

Explanation of summary table columns

Method The HTTP method to be used when requesting the resource

Resource URI The address of the resource, any portions surrounded by {} are parameters.

Request URI
Parameters to be sent as part of the request, these will be passed to the service in the
URI of the request.

Request Body
Parameters to be sent as part of the request, these will be included in the body of the
request. The layouts of the listed data types are found here API Types

Response HTTP
Status Codes

A summary listing of the possible HTTP response codes specific to that resource, a
further explanation of the circumstances that would produce these codes is given in
the individual resource documentation.

Response Body
The data that will be returned in the body of the response, the layouts of the listed
data types are found here API Types

Interface
A reference to the interface that will use this particular resource, an explanation of the
Interfaces can be seen in Figure 30

Summary Table

Method Resource URI
Response HTTP
Status Codes

Interface Description

POST /clips
201 (Created)
406 (Not
Acceptable)

C Add new clip

GET /clips/{clip_id}
200 (Ok)
404 (Not Found)

G Get clip by id

POST /clips/{clip_id}/analyse
202 (Accepted)
404 (Not Found)

B
Instruct orchestration to analyse
clip

POST
/clips/{clip_id}/analysisFini
shed

200 (Ok)
404 (Not Found)

H
Inform orchestration analysis
has completed

POST
/clips/{clip_id}/analysisFail
ed

204 (No Content)
404 (Not Found)

H
Inform orchestration analysis
failed

POST
/embeddedsystem/{syste
m_id}/
report/failure

200 (Ok)
404 (Not Found)

C
Report Embedded System
failure

Page 85
Confidentiality: EC Distribution

July 2015

POST
/embeddedsystem/{syste
m_id}
/report/tampering

200 (Ok)
404 (Not Found)

C
Report suspected Embedded
System tampering

POST
/embeddedsystem/{syste
m_id}/
register

200 (Ok)
404 (Not Found)

C Register Embedded System

POST
/embeddedsystem/{syste
m_id}/
unregister

200 (Ok)
404 (Not Found)

C Unregister Embedded System

 POST /clips

Description: Used to add a new clip to the system, an Id will be assigned to the clip by the orchestration
module (by requesting one from the VCMS module, Interface F).
Supported HTTP Methods: POST
Parameters

Name Data Type Format Required
Example
Value

Description

clip clip JSON Yes API Types
The clip object to be created in the
system

HTTP Responses

Response Description

201 (Created) The clip was successfully added to the system.

406 (Not
Acceptable)

The format of the supplied clip object was not valid.

Example Request

POST /clips HTTP/1.1

Host: api.p-react.eu

Content-Type: application/json

{

 "name": "clip_34.mjpeg",

 "algorithmName": "Fast",

 "dataType": "Video",

 "uri": "https://vcms.p-react.eu/videos/",

 "signature": "d41d8cd98f00b204e9800998ecf8427e",

 "validated": true,

 "startTime": "1410966187",

 "endTime": "1410966310"

}

 GET /clips/{clip_id}
Description: Gets a clip from the system

Supported HTTP Methods: GET
Parameters

Name
Data
Type

Format Required Example Value Description

clip_id UUID / URI Yes 8c35d93e-d4d3-468e-b049- An Id that uniquely

https://redmine.p-react.eu/projects/p-react/wiki/Orchestration_API/edit?section=4

Page 86
Confidentiality: EC Distribution

July 2015

GUID Parameter 19b56b63ad1e identifies a clip

HTTP Responses

Response Description

200 (Ok) The clip was retrieved successfully and is contained in the body of the response.

404 (Not Found) The requested clip was not found on the system.

Example Request

GET /clips/8c35d93e-d4d3-468e-b049-19b56b63ad1e HTTP/1.1

Host: api.p-react.eu

Example Response

{

 "name": "clip_34.mjpeg",

 "id": "8c35d93e-d4d3-468e-b049-19b56b63ad1e",

 "algorithmName": "Fast",

 "dataType": "Video",

 "uri": "https://vcms.p-react.eu/videos/",

 "signature": "d",

 "validated": true,

 "startTime": "1410966187",

 "endTime": "1410966310"

}

 POST /clips/{clip_id}/analyse
Description: Requests the system to analyse a given clip.
Supported HTTP Methods: POST
Parameters

Name
Data
Type

Format Required Example Value Description

clip_id
UUID /
GUID

UriURI
Parameter

Yes
8c35d93e-d4d3-468e-b049-
19b56b63ad1e

An Id that uniquely
identifies a clip

HTTP Responses

Response Description

202 (Accepted) The request to analyse the clip was accept and has been queued in the system.

404 (Not Found) The supplied clip id was not found on the system.

Example Request

GET /clips/8c35d93e-d4d3-468e-b049-19b56b63ad1e/analyze HTTP/1.1

Host: api.p-react.eu

 POST /embeddedsystem/{system_id}/report/failure
Description: Report a failure of an Embedded System.
Supported HTTP Methods: POST
Parameters

Name
Data
Type

Format Required Example Value Description

system_id
UUID /
GUID

URI
Parameter

Yes
e6bb3bf0-3f3e-11e4-916c-
0800200c9a66

An Id that uniquely identifies
an Embedded System

HTTP Responses

Page 87
Confidentiality: EC Distribution

July 2015

Response Description

200 (Ok) The failure report has been accepted and will be recorded.

404 (Not Found) The specified Embedded System_id is unknown.

Example Request

GET /clips/e6bb3bf0-3f3e-11e4-916c-0800200c9a66/report/failure HTTP/1.1

Host: api.p-react.eu

 POST /embeddedsystem/{system_id}/report/tampering
Description: Report tampering of an Embedded System.
Supported HTTP Methods: POST
Parameters

Name
Data
Type

Format Required Example Value Description

system_id
UUID /
GUID

URI
Parameter

Yes
e6bb3bf0-3f3e-11e4-916c-
0800200c9a66

An Id that uniquely identifies
an Embedded System

HTTP Responses

Response Description

200 (Ok) The tamper report has been accepted and will be recorded

404 (Not Found) The specified Embedded System_id is unknown.

Example Request

GET /clips/e6bb3bf0-3f3e-11e4-916c-0800200c9a66/report/tampering HTTP/1.1

Host: api.p-react.eu

 POST /embeddedsystem/{system_id}/register
Description: Register the Embedded System with the orchestration module.
Supported HTTP Methods: POST
Parameters

Name
Data
Type

Format Required Example Value Description

system_id
UUID /
GUID

URI
Parameter

Yes
e6bb3bf0-3f3e-11e4-916c-
0800200c9a66

An Id that uniquely identifies
an Embedded System

HTTP Responses

Response Description

200 (Ok) The Embedded System was successfully registered on the system.

404 (Not Found) The specified Embedded System_id is unknown.

Example Request

GET /clips/e6bb3bf0-3f3e-11e4-916c-0800200c9a66/register HTTP/1.1

Host: api.p-react.eu

Example Response

{

 "status": "registered"

}

Page 88
Confidentiality: EC Distribution

July 2015

 POST /embeddedsystem/{system_id}/unregister
Description: Unregister the Embedded System from the orchestration module.
Supported HTTP Methods: POST
Parameters

Name
Data
Type

Format Required Example Value Description

system_id
UUID /
GUID

URI
Parameter

Yes
e6bb3bf0-3f3e-11e4-916c-
0800200c9a66

An Id that uniquely identifies
an Embedded System

HTTP Responses

Response Description

200 (Ok) The Embedded System was successfully unregistered on the system.

404 (Not Found) The specified Embedded System_id is unknown.

Example Request

GET /clips/e6bb3bf0-3f3e-11e4-916c-0800200c9a66/register HTTP/1.1

Host: api.p-react.eu

Explanation of summary table columns

Method The HTTP method to be used when requesting the resource

Resource URI The address of the resource, any portions surrounded by {} are parameters.

Request URIURI
Parameters to be sent as part of the request, these will be passed to the service in the
URI of the request.

Request Body
Parameters to be sent as part of the request, these will be included in the body of the
request. The layouts of the listed data types are found here API Types

Response HTTP
Status Codes

A summary listing of the possible HTTP response codes specific to that resource, a
further explanation of the circumstances that would produce these codes is given in
the individual resource documentation.

Response Body
The data that will be returned in the body of the response, the layouts of the listed
data types are found here API Types

Interface A reference to the interface that will use this particular resource.

Summary Table

Method Resource URI
Response HTTP
Status Codes

Interface Description

GET /notify/new_clip
200 (Ok)
406 (Not
Acceptable)

A
Notify Business Logic Component of a new
clip event

 GET /notify/new_clip

Description: Used to notify the BLC that a new clip has been added to the system.
Supported HTTP Methods: GET
Parameters

Name Data Type Format Required Example Value Description

clip clip Json Yes API Types The clip object

HTTP Responses

Response Description

https://redmine.p-react.eu/projects/p-react/wiki/Control_API/edit?section=3
https://redmine.p-react.eu/projects/p-react/wiki/Control_API/edit?section=4

Page 89
Confidentiality: EC Distribution

July 2015

200 (Ok) The notification was successful and the response payload contains instructions.

406 (Not Acceptable) The format of the supplied clip object was not valid.

Example Request

GET /clips HTTP/1.1

Host: api.p-react.eu

{

 "name": "clip_34.mjpeg",

 "algorithmName": "Fast",

 "dataType": "Video",

 "uri": "https://vcms.p-react.eu/videos/",

 "signature": "d41d8cd98f00b204e9800998ecf8427e",

 "validated": true,

 "startTime": "1410966187",

 "endTime": "1410966310"

}

Example Response

{

 "action": "analyze"

}

ANNEX II. VCMS Functions

Method Description Parameters Response

addUser Adds a new user
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family: user

userName
(Mandatory)
userPassword
(Mandatory)
any other User
Attribute

userID
(on addUser success)

updateUser Updates a user
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family: user

userID (Required,
Not updatable,
First parameter)

userID
(on updateUser
success)

getUser Retrieves the entire info
from a specific user
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: GET
Resource family: user

userID
(Mandatory)

User Object Attributes

Page 90
Confidentiality: EC Distribution

July 2015

Method Description Parameters Response

findUser Searches the entire
users
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family: user

any other User
Attribute

List of userID

deleteUser Deletes a user
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family: user

userID
(Mandatory)

userID

connect Connects to the VCMS
Server.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family: user

userName
(Required)
userPassword
(Mandatory)

1 (connection and
login established)
-1 (connection failed
due to wrong
username)
-2 (connection failed
due to wrong
password)
-3 (connection failed
due to wrong
username and
password)
-4 (connection already
exists)
-5 (connection failed
due to unknown
reason.)

disconnect Disconnect to the
VCMS Server.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family: user

userName
(Required)
userPassword
(Mandatory)

1 (disconnection and
logout succeeded)
-4 (disconnection
failed since no
established
connection)
-5 (disconnection
failed due to unknown
reason)

addClipObject Adds a new clip.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family:
repository

name (Required)
clipData
(Mandatory)

clipObjectID

Page 91
Confidentiality: EC Distribution

July 2015

Method Description Parameters Response

updateClipObject Updates a clip object.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family:
repository

any Clip Object
Attribute
clipObjectID
(Mandatory, Not
updatable, First
parameter)

clipObjectID
(On updateClipObject
success.)

getClipObject Retrieves the entire info
from a specific clip
object.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: GET
Resource family:
repository

clipObjectID
(Mandatory)

Clip Object Attributes

findClipObject Searches the entire clip
objects.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family:
repository

Any Clip Object
attribute

List of clipObjectID

deleteClipObject Deletes a clip object.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family:
repository

clipObjectID
(Mandatory)

clipObjectID

playbackClipObject Playback the video clip.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: GET
Resource family: player

clipObjectID
(Mandatory)

clipObjectID

transcodeClipObject Transcode clip object
video clips from one
format
to another.
Response formats:
JSON
Requires
authentication: Yes
Supported request

clipObjectID
(Mandatory)
videoFormat (The
new videoFormat)
compression
(This parameter
used alone with
value "yes" or
"no")

clipObjectID

Page 92
Confidentiality: EC Distribution

July 2015

Method Description Parameters Response

methods: POST
Resource family:
transcoder

addAnalyticsObject Adds a new analytics
object to the analytics
objects database.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family:
analytics

Analytics Object
Attributes
analyticsAlrgoID
(Mandatory)
analyticsAlgoNam
e (Mandatory)
analyticsAlgoData
(Mandatory)

analyticsObjectID

updateAnalyticsObject Updates an analytics
object.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: GET
Resource family:
analytics

Analytics Object
Attributes

analyticsObjectID

getAnalyticsObject Retrieves the entire info
from a specific analytics
object to another.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: GET
Resource family:
analytics

analyticsObjectID
(Mandatory)

Analytics Object
Attributes

findAnalyticsObject Searches the entire
analytics objects.
Response formats:
JSON
Requires
authentication: Yes
Supported request
methods: POST
Resource family:
analytics

Analytics Object
Attributes

List of
analyticsObjectID

deleteAnalyticsObject Deletes an analytics
object with specific
analyticsObjectID.
Response formats:
JSON
Requires
authentication: Yes

analyticsObjectID
(Mandatory)

analyticsObjectID

Page 93
Confidentiality: EC Distribution

July 2015

Method Description Parameters Response

Supported request
methods: POST
Resource family:
analytics

ANNEX III. References

[1] http://www.cityofchicago.org/city/en/depts/oem/provdrs/tech.html.

[2] http://www.securitymagazine.com/articles/81995-look-mom-no-wires.

[3] http://www-03.ibm.com/press/us/en/pressrelease/22385.wss.

[4] http://www.cbsnews.com/news/big-brother-to-see-all-everywhere/

[5] http://www.naomiklein.org/articles/2008/05/chinas-all-seeing-eye

[6] https://tfl.gov.uk/corporate/privacy-and-cookies/cctv

[7] http://www.adt.com/

[8] http://www.tycois.com

[9] https://cpisecurity.com

[10] https://www.lorextechnology.com/

[11] http://www.q-see.com/

[12] http://www.guardianprotection.com/

[13] A. Pal, G. Schaefer, M.E. Celebi, "Robust codebook-based video background subtraction",
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2010.

[14] T.S.F. Haines, Tao Xiang, "Background Subtraction with Dirichlet Process Mixture Models,",
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, no.4, pp.670,683, April
2014

[15] Dalal, N.; Triggs, B., "Histograms of oriented gradients for human detection," IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) 2005

[16] Xiaoqin Zhang; Weiming Hu; Wei Qu; Maybank, S., "Multiple Object Tracking Via Species-
Based Particle Swarm Optimization", IEEE Transactions on Circuits and Systems for Video
Technology, vol.20, no.11, pp.1590,1602, Nov. 2010

[17] Sakaino, H., "Video-Based Tracking, Learning, and Recognition Method for Multiple Moving
Objects", IEEE Transactions on Circuits and Systems for Video Technology, vol.23, no.10,
pp.1661,1674, Oct. 2013

[18] Wang, Heng; Kläser, Alexander; Schmid, Cordelia; Liu, Cheng-Lin, "Dense Trajectories and
Motion Boundary Descriptors for Action Recognition", International Journal of Computer Vision,
vol.103, no.1, pp.60,79, 2013

[19] Gorelick, L.; Blank, M.; Shechtman, E.; Irani, M.; Basri, R., "Actions as Space-Time
Shapes", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 12,
pp.2247,2253, Dec. 2007

[20] Rui Zhao; Wanli Ouyang; Xiaogang Wang, "Unsupervised Salience Learning for Person Re-
identification", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

[21] Farenzena, M.; Bazzani, L.; Perina, A.; Murino, V.; Cristani, M., "Person re-identification by
symmetry-driven accumulation of local features," IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp.2360,2367, 2010

Page 94
Confidentiality: EC Distribution

July 2015

[22] L. Bygrave, "Minding the machine : Article 15 of the EC Data Protection Directive and
Automated," Computer Law & Security Report, vol. 17, pp. 17-24, 2001.

[23] C. Stauffer and W. Grimson, "Adaptive background mixture models for real-time tracking,"
in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999.

[24] N. Oliver, B. Rosario and A. Pentland, "A Bayesian computer vision system for modelling
human interactions," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000.

[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 2007.

[26] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to
stereo vision," in Imaging Understanding Workshop, 1981.

[27] G. Farneback, "Two-Frame Motion Estimation Based on Polynomial Expansion," in
Scandinavian Conference on Image Analysis, 2003.

[28] C. Harris and M. Stephens, "A combined corner and edge detector," in Alvey Vision
Conference, 1988.

[29] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2005.

[30] K. Fragkiadaki, W. Zhang, G. Zhang and J. Shi, "Two-Granularity Tracking: Mediating
Trajectory and Detection Graphs for Tracking under Occlusions," in European Conference on
Computer Vision, 2012.

[31] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag New York, Inc.,
2006.

[32] X. Cui, Q. Liu, M. Gao and D. N. Metaxas, "Abnormal detection using interaction energy
potentials," in IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[33] Nick Rozanski and Eóin Woods. 2005. Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Professional.

[34] http://www.microsoft.com/en-us/kinectforwindows/develop/

[35] Khoshelham, K. and Oude Elberink, S.J. (2012) Accuracy and resolution of Kinect depth
data for indoor mapping applications. In: Sensors: journal on the science and technology of
sensors and biosensors: open access, 12 (2012)2 pp. 1437-1454.

http://www.microsoft.com/en-us/kinectforwindows/develop/

